Journal of Animal and Veterinary Advances

Year: 2012
Volume: 11
Issue: 1
Page No. 30 - 35

Effects of β-Cryptoxanthin on Bone Metabolism in a Rat Model of Osteoporosis

Authors : Noriko Ikeda, Toshie Sugiyama, Toshiko Suzuki, Katsuyuki Mukai and Seiji Kusuhara

References

Abe, T., K. Sato, N. Miyakoshi, T. Kudo and Y. Tamura, T. Tsuchida and Y. Kasukawa, 1999. Trabecular remodeling processes in the ovariectomized rat: Modified node-strut analysis. Bone, 24: 591-596.
CrossRef  |  PubMed  |  Direct Link  |  

Anderson, G.L., M. Limacher, A.R. Assaf, T. Bassford and S.A.A. Beresford et al., 2004. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy. J. Am. Med. Assco., 291: 1701-1712.
PubMed  |  Direct Link  |  

Anderson, J.J., M.S. Anthony, J.M. Cline, S.A. Washburn and S.C. Garner, 1999. Health potential of soy isoflavones for menopausal women. Public Health Nutr., 2: 489-504.
CrossRef  |  PubMed  |  Direct Link  |  

Anderson, J.J., W.W. Ambrose and S.C. Garner, 1998. Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model. Proc. Soc. Exp. Biol. Med., 217: 345-350.
PubMed  |  

Brown, J.P., P.D. Delmas, L. Malaval, C. Edouard, M.C. Dhapuy and P.J. Meunier, 1984. Serum bone Gla-protein: A specific marker for bone formation in postmenopausal osteoporosis. Lancet, 19: 1091-1093.
PubMed  |  Direct Link  |  

Dempster, D.W., R. Birchman, R. Xu, R. Lindsay and V. Shen, 1995. Temporal changes in cancellous bone structure of rats immediately after ovariectomy. Bone, 16: 157-161.
CrossRef  |  

Hsieh, C.Y., R.C. Santel, S.Z. Haslam and W.G. Helferich, 1998. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res., 58: 3833-3838.
PubMed  |  

Jilka, R.L., G. Hangoc, G. Girasole, G. Passeri and D.C. Williams et al., 1992. Increased osteoclast development after estrogen loss: Mediation by interleukin-6. Science, 257: 88-91.
CrossRef  |  Direct Link  |  

Ju, Y.H., C.D. Allred, K.F. Allred, K.L. Karko, D.R. Doerge and W.G. Helferich, 2001. Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice. J. Nutr., 131: 2957-2962.
PubMed  |  

Lesclous, P., D. Guez, B. Baroukh, A. Vignery and J.L. Saffar, 2004. Histamine participates in the early phase of trabecular bone loss in ovariectomized rats. Bone, 34: 91-99.
CrossRef  |  PubMed  |  Direct Link  |  

Lindsay, R., F. Cosman, R.A. Lobo, B.W. Walsh and S.T. Harris et al., 1999. Addition of alendronate to ongoing hormone replacement therapy in the treatment of osteoporosis: A randomized, controlled clinical trial. J. Clin. Endocrinol. Metab., 84: 3076-3081.
CrossRef  |  Direct Link  |  

Lorenzo, J.A., A. Naprta, Y. Rao, C. Alander and M. Glaccum et al., 1998. Mice lacking the type I interleukin-1 receptor do not lose bone mass after ovariectomy. Endocrinology, 139: 3022-3025.
CrossRef  |  PubMed  |  Direct Link  |  

Mellish, R.W., M.W. Ferguson-Pell, G.V. Cochran, R. Lindsay and D.W. Dempster, 1991. A new manual method for assessing two-dimensional cancellous bone structure: Comparison between iliac crest and lumbar vertebra. J. Bone Miner. Res., 6: 689-696.
PubMed  |  

Morabito, N., A. Crisafulli, C. Vergara, A. Gaudio and A. Lasco et al., 2002. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: A randomized double-blind placebo-controlled study. J. Bone Miner. Res., 17: 1904-1912.
PubMed  |  

Nishino, H., H. Tokuda, Y. Satomi, M. Masuda and Y. Osaka et al., 2004. Cancer prevention by antioxidants. BioFactors, 22: 57-61.
PubMed  |  

Pacifici, R., L. Rifas, R. McCracken, I. Vered, C. McMurtry, L.V. Avioli and W.A. Peck, 1989. Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc. Natl. Acad. Sci. USA., 86: 2398-2402.
PubMed  |  

Price, P.A., M.K. Williamson and J.W. Lothringer, 1981. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J. Biol. Chem., 256: 12760-12766.
PubMed  |  

Rao, A.V., 2002. Lycopene, tomatoes and the prevention of coronary heart disease. Exp. Biol. Med., 227: 908-913.
CrossRef  |  Direct Link  |  

Riggs, B.L., K.S. Tsai and K.G. Mann, 1986. Effect of acute increases in bone matrix degradation on circulating levels of bone-Gla protein. J. Bone Miner. Res., 1: 539-542.
PubMed  |  

Semba, R.D., F. Lauretani and L. Ferrucci, 2007. Carotenoids as protection against sarcopenia in older adults. Arch. Biochem. Biophys., 458: 141-145.
CrossRef  |  

Srivastava, A.K., S. Bhattacharyya, G. Castillo, J. Wergedal, S. Mohan and D.J. Baylink, 2000. Development and application of a serum C-telopeptide and osteocalcin assay to measure bone turnover in an ovariectomized rat model. Calcif. Tissue Int., 66: 435-442.
CrossRef  |  

Stahl, W. and H. Sies, 2005. Bioactivity and protective effects of natural carotenoids. Biochem. Biophys. Acta, 1740: 101-107.
CrossRef  |  PubMed  |  Direct Link  |  

Uchiyama, S. and M. Yamaguchi, 2004. Inhibitory effect of β-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Biochem. Pharmacol., 67: 1297-1305.
PubMed  |  

Uchiyama, S. and M. Yamaguchi, 2005. β-Cryptoxanthin stimulates cell proliferation and transcriptional activity in osteoblastic MC3T3-E1 cells. Int. J. Mol. Med., 15: 675-681.
PubMed  |  

Uchiyama, S. and M. Yamaguchi, 2005. Beta-Cryptoxanthin stimulates cell differentiation and mineralization in osteoblastic MC3T3-E1 cells. J. Cell. Biochem., 95: 1224-1234.
PubMed  |  

Uchiyama, S. and M. Yamaguchi, 2006. β-cryptoxanthin stimulates apoptotic cell death and suppresses cell function in osteoclastic cells: Change in their related gene expression. J. Cell. Biochem., 98: 1185-1195.
PubMed  |  

Uchiyama, S. and M. Yamaguchi, 2006. Oral administration of β-cryptoxanthin prevents bone loss in ovariectomized rats. Int. J. Mol. Med., 17: 15-20.
PubMed  |  

Welshons, W.V., C.S. Murphy, R. Koch, G. Calaf and V.C. Jordan, 1987. Stimulation of breast cancer cells in vitro by the environmental estrogen enterolactone and the phytoestrogen equol. Breast Cancer Res. Treat., 10: 169-175.
CrossRef  |  PubMed  |  Direct Link  |  

Yamaguchi, M. and S. Uchiyama, 2003. Effect of carotenoid on calcium content and alkaline phosphatase activity in rat femoral tissues in vitro: The unique anabolic effect of β-cryptoxanthin. Biol. Pharm. Bull., 26: 1188-1191.
PubMed  |  

Yamaguchi, M. and S. Uchiyama, 2004. β-Criptoxanthin stimulates bone formation and inhibits bone resorption in tissue culture in vitro. Mol. Cell Biochem., 258: 137-144.
CrossRef  |  PubMed  |  Direct Link  |  

Yano, M., M. Kato, Y. Ikoma, A. Kawasaki and Y. Fukazawa et al., 2005. Quantitation of carotenoids in raw and processed fruits in Japan. Food Sci. Technol. Res., 11: 13-18.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved