Journal of Animal and Veterinary Advances

Year: 2012
Volume: 11
Issue: 5
Page No. 583 - 591

Optimization of Fermentation Parameters for β-Glucosidase Production by Aspergillus niger

Authors : Li-Chun Qian, Shi-Jun Fu, Hong-Mei Zhou, Jian-Yi Sun and Xiao-Yan Weng

References

Brouns, F., 2002. Soya isoflavones: A new and promising ingredient for the health foods sector. Food Res. Int., 35: 187-193.
CrossRef  |  

Brumbauer, A., G. Johansson and K. Reczey, 2000. Study on heterogeneity of -glucosidase from Aspergillus species by using counter-current distribution. J. Chromatogr. B: Biomed. Sci. Appl., 743: 247-254.
CrossRef  |  Direct Link  |  

Choi, Y.B., K.S. Kim and J.S. Rhee, 2002. Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria. Biotechnol. Lett., 24: 2113-2116.
Direct Link  |  

Daroit, D.J., S.T. Silveira, P.F. Hertz and A. Brandelli, 2007. Production of extracellular β-glucosidase by Monascus purpureus on different growth substrates. Process Biochem., 42: 904-908.
CrossRef  |  

Dhake, A.B. and M.B. Patil, 2005. Production of β-glucosidase by Penicillium purpurogenum. Braz. J. Microbiol., 36: 170-176.
CrossRef  |  Direct Link  |  

Elyas, K.K., A. Mathew, R.K. Sukumaran, P.P. Ali, K. Sapna, S.R. Kumar and K.R. Mol, 2010. Production optimization and properties of beta glucosidases from a marine fungus Aspergillus-SA 58. N. Biotechnol., 27: 347-351.
PubMed  |  

Gokhale, D.V., S.G. Patil and K.B. Bastawde, 1991. Optimization of cellulase production by Aspergillus niger NCIM 1207. Applied Biochem. Biotechnol., 30: 99-109.
CrossRef  |  PubMed  |  Direct Link  |  

Gunata, Y.Z., C.L. Bayonove, R.E. Cordonnier, A. Arnaud and P. Galzy, 1990. Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamii β-glucosidases. J. Sci. Food Agric., 50: 499-506.

Han, Y. and H. Chen, 2008. Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresour. Technol., 99: 6081-6087.
CrossRef  |  

Harnpicharnchai, P., V. Champreda, W. Sornlake and L. Eurwilaichitr, 2009. A thermotolerant β-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expression Purif., 67: 61-69.
CrossRef  |  PubMed  |  Direct Link  |  

Hernandez, L.F., J.C. Espinosa, M. Fernandez-Gonzalez and A. Briones, 2003. β-Glucosidase activity in a Saccharomyces cerevisiae wine strain. Int. J. Food Microbiol., 80: 171-176.
CrossRef  |  

Hsieh, M.C. and T.L. Graham, 2001. Partial purification and characterization of a soybean β-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry, 58: 995-1005.
PubMed  |  

Joo, A.R., M. Jeya, K.M. Lee, K.M. Lee, H.J. Moon, Y.S. Kim and J.K. Lee, 2010. Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochem., 45: 851-858.
CrossRef  |  

Kang, S.W., Y.S. Park, J.S. Lee, S.I. Hong and S.W. Kim, 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresour. Technol., 91: 153-156.
CrossRef  |  Direct Link  |  

Liggins, J., L.J.C. Bluck, S. Runswick, C. Atkinson, W.A. Coward and S.A. Bingham, 2000. Daidzein and genistein content of vegetables. Br. J. Nutr., 84: 717-725.
PubMed  |  

Lonsane, B.K., N.P. Ghildyal, S. Budiatman and S.V. Ramakrishna, 1985. Engineering aspects of solid state fermentation. Enzyme Microb. Technol., 7: 258-265.

Miura, T., L. Yuan, B. Sun, H. Fujii, M. Yoshida, K. Wakame and K. Kosuna, 2002. Isoflavone aglycon produced by culture of soybean extracts with basidiomycetes and its anti-angiogenic activity. Biosci. Biotechnol. Biochem., 66: 2626-2631.

Ng, I.S., C.W. Li, S.P. Chan, J.L. Chir and P.T. Chen et al., 2010. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresour. Technol., 101: 1310-1317.
CrossRef  |  

Pal, S., S.P. Banik, S. Ghorai, S. Chowdhury and S. Khowala, 2010. Purification and characterization of a thermostable intra-cellular β-glucosidase with transglycosylation properties from filamentous fungus Termitomyces clypeatus. Bioresour. Technol., 101: 2412-2420.
CrossRef  |  

Pitson, S.M., R.J. Seviour and B.M. McDougall, 1999. Induction and carbon source control of extracellular β-glucosidase production in Acremonium persicinum. Mycol. Res., 103: 161-167.
CrossRef  |  

Pushalkar, S., K.K. Rao and K. Menon, 1995. Production of β-glucosidase by Aspergillus terreus. Curr. Microbiol., 30: 255-258.
CrossRef  |  

Pyo, Y.H., T.C. Lee, Y.K. Rhee and Y.C. Lee, 2005. Hydrolysis of isoflavone glycosides in soymilk fermented with some bacterial strains. Food Res. Int., 38: 551-559.

Qian, L.C. and J.Y. Sun, 2009. Effects of β-glucosidase as a feed supplementary on the growth performance, digestive enzymes and physiology of broilers. Asian-Aust. J. Anim. Sci., 22: 260-266.
Direct Link  |  

Ribeiro, M.L.L., J.M.G. Mandarino, M.C. Carrao-Panizzi, M.C.N. de Oliveira, C.B.H. Campo, A.L. Nepomuceno and E.I. Ida, 2007. Isoflavone content and β-glucosidase activity in soybean cultivars of different maturity groups. J. Food Comp. Anal., 20: 19-24.
CrossRef  |  Direct Link  |  

Steel, R.G.D. and J.H. Torrie, 1980. Principle and Procedure of Statistics. A Biochemical Approach. 2nd Edn., McGraw-Hill Book Company, New York.

Terebiznik, M.R. and A.M.R. Pilosof, 1999. Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol. Tech., 13: 215-219.
CrossRef  |  

Tsao, G.T., L. Xia, N. Cao and C.S. Gong, 2000. Solid-state fermentation with Aspergillus niger for cellobiase production. Applied Biochem. Biotechnol., 84-86: 743-749.
CrossRef  |  

Viniegra-Gonzalez, G., 1998. Strategies for the Selection of Mold Strains Geared to Produce Enzymes on Solid Substrates. In: Advances Bioprocess Engineer II, Galiendo, E. and O.T. Ramirez (Eds.). Kluwer Academic Publishers, Dordrecht, Boston, pp: 123-126.

Viniegra-Gonzalez, G., E. Favela-Torres, C.N. Aguilar, S.D.J. Romero-Gomez, G. Diaz-Godinez and C. Augur, 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J., 13: 157-167.
CrossRef  |  

Weng, X.Y. and J.Y. Sun, 2006. Biodegradation of free gossypol by a new strain of Candida tropicalis under solid state fermentation: Effects of fermentation parameters. Process Biochem., 41: 1663-1668.
CrossRef  |  

Yang, J.H. and D.M. Ren, 2005. β-glucosidase-producing strain of breeding and solid fermentation conditions. J. Anhui Agric. Sci., 33: 1566-1568.

Yu, H.L., J.H. Xu, W.Y. Lu and G.Q. Lin, 2007. Identification, purification and characterization of β-glucosidase from apple seed as a novel catalyst for synthesis of O-glucosides. Enzyme Microbial Technol., 40: 354-361.
CrossRef  |  

Zhang, C., D. Li, H. Yu, B. Zhang and F. Jin, 2007. Purification and characterization of piceid-β-d-glucosidase from Aspergillus oryzae. Process Biochem., 42: 83-88.
CrossRef  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved