Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 8 SI
Page No. 6451 - 6461

Aerodynamic Characteristics of an Aerofoil in Wide Range of Angles of Attack

Authors : Pavel V. Bulat, Samuel Mitchell and Konstantin N. Volkov

References

Claessens, M.C., 2006. NACA 0018 measurement report. Master Thesis, Delft University of Technology, Delft, Netherlands.

Critzos, C.C., H.H. Heyson and R.W. Boswinkle Jr, 1955. Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0 deg to 180 deg (No. NACA-TN-3361). NASA, Washington, DC., USA. http://www.dtic.mil/docs/citations/ADA377080

Cummings, R.M., J.R. Forsythe, S.A. Morton and K.D. Squires, 2003. Computational challenges in high angle of attack flow prediction. Prog. Aerosp. Sci., 39: 369-384.
CrossRef  |  Direct Link  |  

Dominy, R., P. Lunt, A. Bickerdyke and J. Dominy, 2007. Self-starting capability of a Darrieus turbine. Proc. Inst. Mech. Eng., Part A. J. Power Energy, 221: 111-120.
CrossRef  |  Direct Link  |  

Eleni, D.C., T.I. Athanasios and M.P. Dionissios, 2012. Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil. J. Mech. Eng. Res., 4: 100-111.
CrossRef  |  Direct Link  |  

Ferreira, C.J.S., A. Van Zuijlen, H. Bijl, G. Van Bussel and G. Van Kuik, 2010. Simulating dynamic stall in a Two-dimensional vertical-axis wind turbine: Verification and validation with particle image velocimetry data. Intl. J. Prog. Appl. Wind Power Convers. Technol., 13: 1-17.
CrossRef  |  Direct Link  |  

Ferreira, C.S., G. Van Kuik, G. Van Bussel and F. Scarano, 2009. Visualization by PIV of dynamic stall on a vertical axis wind turbine. Exp. Fluids, 46: 97-108.
Direct Link  |  

Gao, H., H. Hu and Z.J. Wang, 2008. Computational study of unsteady flows around dragonfly and smooth airfoils at low Reynolds numbers. Proceedings of the AIAA 46th International Conference on Aerospace Sciences Meeting and Exhibit, January 7-10, 2008, AIAA, Reno, Nevada, pp: 1-1.

Gregory, N. and C.L. O’reilly, 1973. Low-Speed Aerodynamic Characteristics of NACA 0012 Aerofoil Section, Including the Effects of Upper-Surface Roughness Simulating Hoar Frost. Her Majesty’s Stationery Office, Richmond, London, UK., ISBN:9780114705268,.

Harris, C.D., 1981. Two-Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the Langley 8-Foot Transonic Pressure Tunnel. NASA Langley Research Center, Hampton, Virginia, Pages: 137.

Hoarau, Y., M. Braza, Y. Ventikos and D. Faghani, 2006. First stages of the transition to turbulence and control in the incompressible detached flow around a NACA0012 wing. Intl. J. Heat Fluid Flow, 27: 878-886.
Direct Link  |  

Im, H. and G. Zha, 2011. Delayed detached eddy simulation of a stall flow over NACA0012 airfoil using high order schemes. Proceedings of the 49th International Conference on AIAA Aerospace Sciences Meeting Including the new Horizons Forum and Aerospace Exposition, January 4-7, 2011, AIAA, Orlando, Florida, pp: 1-1.

Jeong, J. and F. Hussain, 1995. On the identification of a vortex. J. Fluid Mech., 285: 69-94.
Direct Link  |  

Jones, L.E., R.D. Sandberg and N.D. Sandham, 2008. Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech., 602: 175-207.
CrossRef  |  Direct Link  |  

Kirke, B. and L. Lazauskas, 2008. Variable pitch Darrieus water turbines. J. Fluid Sci. Technol., 3: 430-438.
Direct Link  |  

Li, C., S. Zhu, Y.L. Xu and Y. Xiao, 2013. 2.5 D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renewable Energy, 51: 317-330.
CrossRef  |  Direct Link  |  

Mary, I. and P. Sagaut, 2002. Large eddy simulation of flow around an airfoil near stall. AIAA J., 40: 1139-1145.
Direct Link  |  

Moreau, S., J. Christophe and M. Roger, 2008. LES of the trailing-edge flow and noise of a NACA0012 airfoil near stall. Proc. Summer Program, 1: 317-329.
Direct Link  |  

Sagaut, P., 2006. Large Eddy Simulation for Incompressible Flows: An Introduction. 2nd Edn., Springer, Berlin, Germany, Pages: 565.

Sheldahl, R.E. and P.C. Klimas, 1981. Aerodynamic Characteristics of Seven Airfoil Sections Through 180 Degrees Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines. Sandia National laboratories, Albuquerque, New Mexico.

Sheldahl, R.E., P.C. Klimas and L.V. Feltz, 1980. Aerodynamic performance of a 5-metre-diameter Darrieus turbine with extruded aluminum NACA-0015 blades. Master Thesis, National Technical Information Service, Springfield, Virginia, USA.

Sorensen, N.N. and J.A. Michelsen, 2004. Drag prediction for blades at high angle of attack using CFD. J. Solar Energy Eng., 126: 1011-1016.
CrossRef  |  Direct Link  |  

Worasinchai, S., G. Ingram and R. Dominy, 2011. A low-Reynolds-number, high-angle-of-attack investigation of wind turbine aerofoils. Proc. Inst. Mech. Eng. Part. A. J. Power Energy, 225: 748-763.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved