Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 23
Page No. 9807 - 9812

Role of Ionic Liquid and Tin (IV) Oxide Nanoparticles on the Ionic Conductivity of Biodegradable Solid Polymer Electrolyte

Authors : Mee Yoke Chong, Arshid Numan, YCY Evyan, WH Cheng, LS Wong, K. Ramesh and S. Ramesh

References

Al-Hamdi, A.M., M. Sillanpaa and J. Dutta, 2015. Photocatalytic degradation of phenol by Iodine doped tin oxide nanoparticles under UV and sunlight irradiation. J. Alloys Compd., 618: 366-371.
CrossRef  |  Direct Link  |  

Barik, R., N. Devi, D. Nandi, S. Siwal and S.K. Ghosh et al., 2017. Multifunctional performance of nanocrystalline tin oxide. J. Alloys Compd., 723: 201-207.
CrossRef  |  Direct Link  |  

Bulte, J.W.M. and M.M.J. Modo, 2017. Design and Applications of Nanoparticles in Biomedical Imaging. Springer International Publishing, Cham, Switzerland, ISBN:978-3-319-42167-4, Pages: 469.

Chatterjee, B., N. Kulshrestha and P.N. Gupta, 2016. Nano composite solid polymer electrolytes based on biodegradable polymers starch and poly vinyl alcohol. Meas., 82: 490-499.
CrossRef  |  Direct Link  |  

Chong, M.Y., A. Numan, C.W. Liew, H.M. Ng and K. Ramesh et al., 2018. Enhancing the performance of green solid-state electric double-layer capacitor incorporated with fumed silica nanoparticles. J. Phys. Chem. Solid., 117: 194-203.
CrossRef  |  Direct Link  |  

Chong, M.Y., A. Numan, C.W. Liew, K. Ramesh and S. Ramesh, 2017. Comparison of the performance of copper oxide and yttrium oxide nanoparticle based hydroxylethyl cellulose electrolytes for supercapacitors. J. Appl. Polym. Sci., Vol. 134, 10.1002/app.44636

Choudhary, S. and R.J. Sengwa, 2017. Effects of different inorganic nanoparticles on the structural, dielectric and ion transportation properties of polymers blend based nanocomposite solid polymer electrolytes. Electrochim. Acta, 247: 924-941.
CrossRef  |  Direct Link  |  

Du, X., Z. Zhang, W. Liu and Y. Deng, 2017. Nanocellulose-based conductive materials and their emerging applications in energy devices-a review. Nano Energy, 35: 299-320.
Direct Link  |  

Ivetic, T.B., N.L. Fincur, B.F. Abramovic, M. Dimitrievska and G.R. Strbac et al., 2016. Environmentally friendly photoactive heterojunction zinc tin oxide nanoparticles. Ceram. Intl., 42: 3575-3583.
CrossRef  |  Direct Link  |  

Jeon, J.D., M.J. Kim and S.Y. Kwak, 2006. Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P (VdF-HFP)/P (EO-EC) membranes. J. Power Sourc., 162: 1304-1311.
CrossRef  |  Direct Link  |  

Karuppasamy, K., P.A. Reddy, G. Srinivas, R. Sharma and A. Tewari et al., 2017. An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based Ionic Liquid Gel Polymer Electrolytes (ILGPEs) for rechargeable lithium ion batteries. J. Solid State Electr., 21: 1145-1155.
CrossRef  |  Direct Link  |  

Lu, W., K. Henry, C. Turchi and J. Pellegrino, 2008. Incorporating ionic liquid electrolytes into polymer gels for solid-state ultracapacitors. J. Electrochem. Soc., 155: A361-A367.
CrossRef  |  Direct Link  |  

Manjuladevi, R., S. Selvasekarapandian, M. Thamilselvan, R. Mangalam and S. Monisha et al., 2018. A study on blend polymer electrolyte based on poly (Vinyl alcohol)-poly (acrylonitrile) with magnesium nitrate for magnesium battery. Ionics, 24: 3493-3506.
CrossRef  |  Direct Link  |  

Pal, P. and A. Ghosh, 2018. Investigation of ionic conductivity and relaxation in plasticized PMMA-LiClO4 solid polymer electrolytes. Solid State Ionics, 319: 117-124.
Direct Link  |  

Perumal, P., P.C. Selvin and S. Selvasekarapandian, 2018. Characterization of biopolymer pectin with lithium chloride and its applications to electrochemical devices. Ionics, 24: 3259-3270.
CrossRef  |  Direct Link  |  

Selvalakshmi, S., T. Mathavan, S. Selvasekarapandian and M. Premalatha, 2018. Effect of ethylene carbonate plasticizer on agar-agar: NH4Br-based solid polymer electrolytes. Ionics, 24: 2209-2217.
CrossRef  |  Direct Link  |  

Senevirathne, A.M.C., V.A. Seneviratne and O.A. Ileperuma, 2018. Use of fumed silica nanoparticles to attain polymer free novel quasi-solid state electrolyte for high-efficiency dye-sensitized solar cells. Solar Energy, 159: 531-537.
CrossRef  |  Direct Link  |  

Shi, J., Y. Yang and H. Shao, 2018. Co-polymerization and blending based PEO/PMMA/P (VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J. Membr. Sci., 547: 1-10.
CrossRef  |  Direct Link  |  

Sil, A., R. Sharma and S. Ray, 2015. Mechanical and thermal characteristics of PMMA-based nanocomposite gel polymer electrolytes with CNFs dispersion. Surf. Coat. Technol., 271: 201-206.
CrossRef  |  Direct Link  |  

Suait, M.S., F.N. Jumaah, H.M. Faizzi, S. Mamat and N.A. Ludin et al., 2018. Palm-based polyurethane-ionic liquid gel polymer electrolyte for quasi-solid state dye sensitized solar cell. Ind. Crops Prod., 113: 406-413.
Direct Link  |  

Suleman, M., Y. Kumar and S.A. Hashmi, 2013. Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: Role of ionic liquid addition. J. Phys. Chem., 117: 7436-7443.
CrossRef  |  PubMed  |  Direct Link  |  

Sundaram, N.T.K., T. Vasudevan and A. Subramania, 2007. Synthesis of ZrO2 nanoparticles in microwave hydrolysis of Zr(IV) salt solutions-Ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanoparticles. J. Phys. Chem. Solids, 68: 264-271.
CrossRef  |  Direct Link  |  

Taghizadeh, M.T. and P. Seifi-Aghjekohal, 2015. Sonocatalytic degradation of 2-hydroxyethyl cellulose in the presence of some nanoparticles. Ultrason. Sonochem., 26: 265-272.
CrossRef  |  PubMed  |  Direct Link  |  

Turgut, H.I., V. Eyupoglu, R.A. Kumbasar and I. Sisman, 2017. Alkyl chain length dependent Cr(VI) transport by polymer inclusion membrane using room temperature ionic liquids as carrier and PVDF-co-HFP as polymer matrix. Sep. Purif. Techno., 175: 406-417.
CrossRef  |  Direct Link  |  

Wang, B., H. Lou, H. Xu, J. Zhao and Q. Wang et al., 2018. High voltage, solvent-free solid polymer electrolyte based on a star-comb PDLLA-PEG copolymer for lithium ion batteries. RSC. Adv., 8: 6373-6380.
CrossRef  |  Direct Link  |  

Yang, J., K.Q. Yang and L. Qiu, 2017. Biosynthesis of vitamin C stabilized tin oxide nanoparticles and their effect on body weight loss in neonatal rats. Environ. Toxicol. Pharmacol., 54: 48-52.
PubMed  |  Direct Link  |  

Yang, Q., Z. Zhang, X.G. Sun, Y.S. Hu and H. Xing et al., 2018. Ionic liquids and derived materials for lithium and sodium batteries. Chem. Soc. Rev., 47: 2020-2064.
CrossRef  |  PubMed  |  Direct Link  |  

Yang, Y., J. Cui, P. Yi, X. Zheng and X. Guo et al., 2014. Effects of nanoparticle additives on the properties of agarose polymer electrolytes. J. Power Sources, 248: 988-993.
Direct Link  |  

Zebardastan, N., M.H. Khanmirzaei, S. Ramesh and K. Ramesh, 2017. Performance enhancement of poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based nanocomposite polymer electrolyte with ZnO nanofiller for dye-sensitized solar cell. Org. Electron., 49: 292-299.
CrossRef  |  Direct Link  |  

Zhang, W., J. Nie, F. Li, Z.L. Wang and C. Sun, 2018. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 45: 413-419.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved