Journal of Engineering and Applied Sciences

Year: 2019
Volume: 14
Issue: 16
Page No. 5906 - 5916

ROM-based Inference Method Built on Deep Learning for Sleep Stage Classification

Authors : Mohamed H. AlMeer, Hanadi Hassen and Naveed Nawaz

References

Abbott, S.M. and A. Videnovic, 2016. Chronic sleep disturbance and neural injury: Links to neurodegenerative disease. Nat. Sci. Sleep, 8: 55-61.
CrossRef  |  PubMed  |  Direct Link  |  

Berry, R.B., R. Brooks, C.E. Gamaldo, S.M. Harding and C.L. Marcus et al., 2012. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. American Academy of Sleep Medicine, Darien, Illinois, USA.,.

Biswal, S., J. Kulas, H. Sun, B. Goparaju and M.B. Westover et al., 2017. SLEEPNET: Automated sleep staging system via deep learning. Mach. Learn., 1: 1-17.
Direct Link  |  

Gunes, S., K. Polat and S. Yosunkaya, 2010. Efficient sleep stage recognition system based on EEG signal using K-means clustering based feature weighting. Expert Syst. Appl., 37: 7922-7928.
CrossRef  |  Direct Link  |  

Hillman, D.R., A.S. Murphy, R. Antic and L. Pezzullo, 2006. The economic cost of sleep disorders. Sleep, 29: 299-305.
PubMed  |  Direct Link  |  

Hori, T., Y. Sugita, E. Koga, S. Shirakawa and K. Inoue et al., 2001. Proposed supplements and amendments to a manual of standardized terminology, techniques and scoring system for sleep stages of human subjects the Rechtschaffen and Kales (1968) standard. Psychiatry Clin. Neurosci., 55: 305-310.
CrossRef  |  PubMed  |  Direct Link  |  

Hsu, Y.L., Y.T. Yang, J.S. Wang and C.Y. Hsu, 2013. Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomput., 104: 105-114.
Direct Link  |  

Huang, C.S., C.L. Lin, L.W. Ko, S.Y. Liu and T.P. Su et al., 2014. Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels. Front. Neurosci., 8: 1-12.
CrossRef  |  PubMed  |  Direct Link  |  

Jatupaiboon, N., S. Pan-ngum and P. Israsena, 2013. Real-time EEG-based happiness detection system. Sci. World J., 2013: 1-12.
CrossRef  |  PubMed  |  Direct Link  |  

Lajnef, T., S. Chaibi, P. Ruby, P.E. Aguera and J.B. Eichenlaub et al., 2015. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Methods, 250: 94-105.
CrossRef  |  PubMed  |  Direct Link  |  

Langkvist, M., L. Karlsson and A. Loutfi, 2012. Sleep stage classification using unsupervised feature learning. Adv. Artif. Neural Syst., 2012: 1-10.
CrossRef  |  Direct Link  |  

Medic, G., M. Wille and M.E. Hemels, 2017. Short-and long-term health consequences of sleep disruption. Nat. Sci. Sleep, 9: 151-161.
CrossRef  |  PubMed  |  

Prochazka, A., J. Kuchynka, O. Vysata, P. Cejnar and M. Valis et al., 2018. Multi-class sleep stage analysis and adaptive pattern recognition. Appl. Sci., 8: 1-14.
CrossRef  |  Direct Link  |  

Rosenberg, R.S. and S. Van Hout, 2013. The American Academy of Sleep Medicine inter-scorer reliability program: Sleep stage scoring. J. Clin. Sleep Med., 9: 81-87.
CrossRef  |  PubMed  |  Direct Link  |  

Siddique, N. and H. Adeli, 2013. Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. John Wiley & Sons, Hoboken, New Jersey, USA., ISBN:9781118337844, Pages: 532.

Simonyan, K. and A. Zisserman, 2014. Very deep convolutional networks for large-scale image recognition. Proceedings of the Conference on Learning Representations (ICLR’15), May 7-9, 2015, Hilton San Diego Resort & Spa, San Diego, California, pp: 1-14.

Sors, A., S. Bonnet, S. Mirek, L. Vercueil and J.F. Payen, 2018. A convolutional neural network for sleep stage scoring from raw single-channel EEG. Biomed. Signal Process. Control, 42: 107-114.
CrossRef  |  Direct Link  |  

Stephansen, J.B., A. Ambati, E.B. Leary, H.E. Moore and O. Carrillo et al., 2017. Neural network an1alysis of sleep stages enables efficient diagnosis of narcolepsy. Neural Evol. Comput., 1: 1-15.
CrossRef  |  Direct Link  |  

Supratak, A., H. Dong, C. Wu and Y. Guo, 2017. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE. Trans. Neural Syst. Rehabil. Eng., 25: 1998-2008.
CrossRef  |  PubMed  |  Direct Link  |  

Tsinalis, O., P.M. Matthews and Y. Guo, 2016. Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Ann. Biomed. Eng., 44: 1587-1597.
CrossRef  |  PubMed  |  

Tsinalis, O., P.M. Matthews, Y. Guo and S. Zafeiriou, 2016. Automatic sleep stage scoring with single-channel EEG using convolutional neural networks. Mach. Learn., 1: 1-12.
Direct Link  |  

Wulff, K., S. Gatti, J.G. Wettstein and R.G. Foster, 2010. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci., 11: 589-599.
CrossRef  |  PubMed  |  Direct Link  |  

Yulita, I.N., M.I. Fanany and A.M. Arymuthy, 2017. Bi-directional long short-term memory using quantized data of deep belief networks for sleep stage classification. Procedia Comput. Sci., 116: 530-538.
CrossRef  |  Direct Link  |  

Zhang, J., Y. Wu, J. Bai and F. Chen, 2016. Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers. Trans. Inst. Meas. Control, 38: 435-451.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved