Research Journal of Applied Sciences

Year: 2009
Volume: 4
Issue: 4
Page No. 129 - 133

Translation Based Estimation Technique to Handle Occlusion While Using Mean-Shift in Tracking

Authors : A.H.M. Kamal and Montse Parada

References

Beleznai, C., B. Fruhstuck, H. Bischof and W. Kropatsch, 2005. Model-based occlusion handling for tracking in crowded scenes. Aust. Comput. Soc., 192: 227-234.
Direct Link  |  

Beleznai, C., T. Schlogl, B. Wachmann, H. Bischof and W. Kropatsch, 2002. Tracking multiple objects in complex scenes. Aust. Comput. Soc., 160: 175-182.
Direct Link  |  

Collines, R.T., 2003. Mean-shift blob tracking through scale space. Comput. Vision Pattern Recognition, 2: 471-474.
Direct Link  |  

KaewTraKulPong, P. and R. Bowden, 2001. An improved adaptive background mixture model for real-time tracking with shadow detection. Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems, September 2001, Kingston, UK., pp: 1-5.

Li, L., W. Huang, I.Y.H. Gu and Q. Tian, 2003. Foreground Object Detection from Videos Containing Complex Background. Proceedings of the 11th ACM International Conference on Multimedia. Berkeley, USA., ISBN: 1-58113-722-2, pp: 2-10.

Rosin, P.L., 1998. Thresholding for Change Detection; Proceedings of the 6th International Conference on Computer Vision (ICCV). Publisher IEEE Comput. Soc. Washington, DC, USA., ISBN: 81-7319-221-9, pp: 274.

Stauffer, C. and W.E.L. Grimson, 1999. Adaptive background mixture models for real-time tracking. Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition, June 23-25, 1999, Los Alamitos, CA., USA., pp: 246-252.

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved