Research Journal of Applied Sciences

Year: 2014
Volume: 9
Issue: 8
Page No. 489 - 495

Controller Design for Continuous Stirred Tank Reactor Using Adaptive Control

Authors : K. Prabhu and V. Murali Bhaskaran

References

Adetola, V., D. DeHaan and M. Guay, 2009. Adaptive model predictive control for constrained nonlinear systems. Syst. Control Lett., 58: 320-326.
CrossRef  |  Direct Link  |  

Agalya, A. and B. Nagaraj, 2013. Certain investigation on concentration control of CSTR: A comparative approach. Int. J. Adv. Soft Comput. Appl., Vol. 5.

Ahadpour, H., 2011. A novel Nero fuzzy controller as underwater discoverer. J. Basic. Appl. Sci. Res., 1: 973-979.
Direct Link  |  

Ali, E.M. and A.M. Abu Khalaf, 2004. Fuzzy control for the start-up of a non-isothermal CSTR. J. King Saud Univ., 17: 25-45.
Direct Link  |  

Aslam, F. and G. Kaur, 2011. Comparative analysis of conventional, P, PI, PID and fuzzy logic controllers for the efficient control of concentration in CSTR. Int. J. Comput. Applied, 17: 12-16.
CrossRef  |  Direct Link  |  

Banu, U.S. and G. Uma, 2007. ANFIS gain scheduled CSTR with genetic algorithm based PID minimizing integral square error. Proceedings of the IET UK International Conference on Information and Communication Technology in Electrical Science, December 20-22, 2007, Chennai, Tamilnadu, India, pp: 57-62.

Banu, U.S. and G. Uma, 2007. Fuzzy gain scheduled pole placement based state feedback control of CSTR. Proceedings of the IET UK International Conference on Information and Communication Technology in Electrical Science, December 20-22, 2007, Chennai, Tamilnadu, India, pp: 63-68.

Bingul, Z. and O. Karahan, 2011. A fuzzy logic controller tuned with PSO for 2 DOF robot trajectory control. Expert Syst. Appl., 38: 1017-1031.
CrossRef  |  Direct Link  |  

Brehm, T. and K.S. Rattan, 1993. Hybrid fuzzy logic PID controller. Proceedings of the IEEE National Aerospace and Electronics Conference, May 24-28, 1993, Dayton, OH., pp: 807-813.

Bucz, S., L. Harsanyi and V. Vesely, 2008. A new approach of tuning PID controllers. ICIC Express Lett., 2: 317-322.

Fadaei, F., M. Shahbazian, M. Aghajani and H. Jazayeri-Rad, 2013. A novel hybrid fuzzy PID controller based on cooperative co-evolutionary genetic algorithm. J. Basic. Applied Sci. Res., 3: 337-344.
Direct Link  |  

Hong, M. and S. Cheng, 2012. Nonlinear model predictive control based on LS-SVM Hammerstein wiener model. J. Comput. Inform. Syst., 8: 1373-1381.
Direct Link  |  

Hussain, M.A., C.R. Che-Hassan, K.S. Loh and K.W. Mah, 2007. Application of artificial intelligence techniques in process fault diagnosis. Eng. Sci. Technol., 2: 260-270.
Direct Link  |  

Juang, Y.T., Y.T. Chang and C.P. Huang, 2008. Design of fuzzy PID controllers using modifed triangular membership functions. Inform. Sci., 78: 1325-1333.
CrossRef  |  

Kozakova, A., 2008. Tuning detection decentralized PID controllers for performance and robust stability. ICIC Express Lett., 2: 117-122.
Direct Link  |  

Lee, C.M. and C.N. Ko, 2009. Time series prediction using RBF neural networks with a nonlinear time varying evolution PSO algorithm. Neurocomputing, 73: 449-460.
CrossRef  |  Direct Link  |  

Malar, A.S.M. and T. Thyagarajan, 2009. Artificial neural networks based modeling and control of continuous stirred tank reactor. Am. J. Eng. Applied Sci., 2: 229-235.
CrossRef  |  Direct Link  |  

Pratumsuwan, P., S. Thongchai and S. Tansriwong, 2010. A hybrid of fuzzy and proportional-integral-derivative controller for electro-hydraulic position servo system. Energy Res. J., 1: 62-67.

Qiao, J.H. and H.Y. Wang, 2011. Backstepping control with nonlinear disturbance observer for tank gun control system. Proceedings of the IEEE Control and Decision Conference, May 23-25, 2011, Mianyang, pp: 251-254.

Rahmat, M.F., A.M. Yazdani, M.A. Movahed and S. Mahmoudzadeh, 2011. Temperature control of a continuous stirred tank reactor by means of two different intelligent strategies. Int. J. Smart Sensing Intell. Syst., 4: 244-267.
Direct Link  |  

Sastry, S.V.A.R. and K.S.R. Kumar, 2012. Application of fuzzy logic for the control of CSTR. Elixir Electr. Eng., 53: 11704-11706.
Direct Link  |  

Sharma, K.D., A. Chatterjee and A. Rakshit, 2009. A hybrid approach for design of stable adaptive fuzzy controllers employing lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst., 17: 329-342.
CrossRef  |  Direct Link  |  

Sharma, R., K. Singh, D. Singhal and R. Ghosh, 2004. Neural network applications for detecting process faults in packed towers. Chem. Eng. Proces., 43: 841-847.
CrossRef  |  Direct Link  |  

Soheilirad, M.S., M.A.J. Ghasab, S. Sefidgar and A. Saberian, 2012. Tuning of PID controller for multi area load frequency control by using imperialist competitive algorithm. J. Basic Applied Sci. Res., 2: 3461-3469.
Direct Link  |  

Tuan, T.Q. and P.X. Minh, 2012. Adaptive fuzzy model predictive control for non-minimum phase and uncertain dynamical nonlinear systems. J. Comput., 7: 1014-1024.
Direct Link  |  

Vishnoi, V., S. Padhee and G. Kaur, 2012. Controller performance evaluation for concentration control of isothermal continuous stirred tank reactor. Int. J. Sci. Res., Vol. 2.

Vojtesek, J. and P. Dostal, 2010. Adaptive control of chemical reactor. Proceedings of the International Conference on Cybernetics and Informatics, February 10-13, 2010, Vysna Boca, Slovak Republic -.

Yu, J., S. Wang and L. Xi, 2008. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing, 71: 1054-1060.
CrossRef  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2022 All Rights Reserved