Journal of Animal and Veterinary Advances

Year: 2012
Volume: 11
Issue: 16
Page No. 3019 - 3022

Intrarenal Artery Autologous Mesenchymal Stem Cell Injection for Treatment of Chronic Glomerulonephritis in Cat

Authors : Sheng-Chuan Lin, Tzong-Fu Kuo, Fu-Jen Huang, Tsung-Chou Chang and Yan-Der Hsuuw

References

Brodie, J.C. and H.D. Humes, 2005. Stem cell approaches for the treatment of renal failure. Pharmacol. Rev., 57: 299-313.
CrossRef  |  

Direkze, N.C., S.J. Forbes, M. Brittan, T. Hunt and J. Rosemary et al., 2003. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells, 21: 514-520.

Gross, O., D.B. Borza, H.J. Anders, C. Licht and M. Weber et al., 2009. Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrol Dial Transplant, 24: 731-734.
CrossRef  |  

Gupta, S., C. Verfaillie, D. Chmielewski, Y. Kim and M.E. Rosenberg, 2002. A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int., 62: 1285-1290.
PubMed  |  

Imai, E. and H. Iwatani, 2007. The continuing story of renal repair with stem cells. J. Am. Soc. Nephrol., 18: 2423-2428.
CrossRef  |  

Imasawa, T., Y. Utsunomiya, T. Kawamura, Z. Yu and R. Nagasawa et al., 2001. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J. Am. Soc. Nephrol., 12: 1401-1409.
Direct Link  |  

Kunter, U., S. Rong, P. Boor, F. Eitner and G. Muller-Newen et al., 2007. Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am. Soc. Nephrol., 18: 1754-1764.
PubMed  |  

Kunter, U., S. Rong, Z. Djuric, P. Boor, G. Muller-Newen, D. Yu and J. Floege, 2006. Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J. Am. Soc. Nephrol, 17: 2202-2212.
CrossRef  |  Direct Link  |  

Lazzeri, E., C. Crescioli, E. Ronconi, B. Mazzinghi and C. Sagrinati et al., 2007. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol., 18: 3128-3138.
CrossRef  |  

Little, M.H., 2006. Regrow or repair: Potential regenerative therapies for the kidney. J. Am. Soc. Nephrol., 17: 2390-2401.
PubMed  |  

Mohandas, R. and M.S. Segal, 2010. Endothelial progenitor cells and endothelial vesicles-what is the significance for patients with chronic kidney disease. Blood Purif, 29: 158-162.
Direct Link  |  

Poulsom, R., S.J. Forbes, K. Hodivala-Dilke, E. Ryan and S. Wyles et al., 2001. Bone marrow contributes to renal parenchymal turnover and regeneration. J. Pathol., 195: 229-235.
Direct Link  |  

Razzaque, M.S., 2008. Can patient-specific stem cell therapy enhance renal repair? Nephrol. Dial Transplant, 23: 1826-1830.
PubMed  |  

Semedo, P., M. Correa-Costa, M.A. Cenedeze, D.M.A.C. Ma and M.A.D. Reis et al., 2009. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells, 27: 3063-3073.
PubMed  |  

Sugimoto, H., T.M. Mundel, M. Sund, L. Xie, D. Cosgrove and R. Kalluri, 2006. Bone-marrow-derived stem cell repair basement membrane collagen defects and reverse genetic kidney disease. PNAS, 103: 7321-7326.
CrossRef  |  

Terrier, B., D. Joly, D. Ghez, B. Knebelmann, F. Fakhouri and A. Hummel, 2006. Reversible paraparesis in multiple myeloma with renal failure. Nephrol. Dial Transplant, 21: 1439-1440.
CrossRef  |  

Westerweel, P.E., I.E. Hoefer, P.J. Blankestijn, P. Bree and D. Groeneveld et al., 2007. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells. Am. J. Physiol. Renal. Physiol., 292: F1132-F1140.
PubMed  |  

Yokoo, T., A. Fukui and E. Kobayashi, 2007. Application of regenerative medicine for kidney diseases. Organogenesis, 3: 34-43.
Direct Link  |  

Zerbini, G., L. Piemonti, A. Maestroni, G. Dell'Antonio and G. Bianchi, 2006. Stem cells and the kidney: A new therapeutic tool? J. Am. Soc. Nephrol., 17: S123-S126.

Zhang, S., D. Wang, Z. Estrov, S. Raj, J.T. Willerson and E.T.H. Yeh, 2004. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood cd34-positive cells into Cardiomyocytes in vivo. Circulation, 110: 3803-3807.
PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved