Journal of Animal and Veterinary Advances

Year: 2013
Volume: 12
Issue: 7
Page No. 852 - 858

IGF-1 and FoxO3 Expression Profiles and Developmental Differences of Breast and Leg Muscle in Pekin Ducks (Anas platyrhynchos domestica) During Postnatal Stages

Authors : T.S. Xu, L.H. Gu, X.H. Zhang, W. Huang, B.G. Ye, X.L. Liu and S.S. Hou

References

Bodine, S.C., T.N. Stitt, M. Gonzalez, W.O. Kline and G.L. Stover et al., 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol., 3: 1014-1019.
CrossRef  |  

Braun, T. and M. Gautel, 2011. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Mol. Cell Biol., 12: 349-361.
CrossRef  |  

Buckingham, M., 2006. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev., 16: 525-532.
CrossRef  |  

Callis, T.E., J.F. Chen and D.Z. Wang, 2007. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol., 26: 219-225.
CrossRef  |  

Chen, W., M. Tangara, J. Xu and J. Peng, 2012. Developmental transition of pectoralis muscle from atrophy in late-term duck embryos to hypertrophy in neonates. Exp. Physiol., 97: 861-872.
CrossRef  |  

Crow, M.T. and F.E. Stockdale, 1984. Myosin isoforms and the cellular basis of skeletal muscle development. Exp. Biol. Med., 93: 165-174.

Crow, M.T. and F.E. Stockdale, 1986. Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev. Biol., 113: 238-254.
CrossRef  |  

Crow, M.T., P.S. Olson and F.E. Stockdale, 1983. Myosin light-chain expression during avian muscle development. J. Cell Biol., 96: 736-744.
CrossRef  |  

Frost, R.A. and C.H. Lang, 2007. Protein kinase B/Akt: A nexus of growth factor and cytokine signaling in determining muscle mass. J. Applied Physiol., 103: 378-387.
CrossRef  |  Direct Link  |  

Glass, D.J., 2005. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell B., 37: 1974-1984.
CrossRef  |  

Hasselgren, P.O., 2007. Ubiquitination, phosphorylation and acetylation-triple threat in muscle wasting. J. Cell. Physiol., 213: 679-689.
CrossRef  |  

He, C.C., M.C. Bassik, V. Moresi, K. Sun and Y.J. Wei et al., 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481: 511-515.
CrossRef  |  PubMed  |  Direct Link  |  

Li, L., H.H. Liu, F. Xu, J.M. Si, J. Jia and J.W. Wang, 2010. MyoD expression profile and developmental differences of leg and breast muscle in Peking duck (Anas platyrhynchos Domestica) during embryonic to neonatal stages. Micron, 41: 847-852.
CrossRef  |  

Li, X., X. Yang, B. Shan, J. Shi, D. Xia, J. Wegner and R. Zhao, 2009. Meat quality is associated with muscle metabolic status but not contractile myofiber type composition in premature pigs. Meat Sci., 81: 218-223.
CrossRef  |  

Liu, H.H., J.W. Wang, R.P. Zhang, X. Chen and H.Y. Yu et al., 2012. In ovo feeding of IGF-1 to ducks influences neonatal skeletal muscle hypertrophy and muscle mass growth upon satellite cell activation. J. Cell Physiol., 227: 1465-1475.
CrossRef  |  Direct Link  |  

Liu, H.H., J.W. Wang, X. Chen, R.P. Zhang and H.Y. Yu et al., 2011. In ovo administration of rhIGF-1 to duck eggs affects the expression of myogenic transcription factors and muscle mass during late embryo development. J. Applied Physiol., 111: 1789-1797.
CrossRef  |  

Mammucari, C., G. Milan, V. Romanello, E. Masiero and R. Rudolf et al., 2007. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab., 6: 458-471.
CrossRef  |  

Merlie, J.P., M.E. Buckingham and R.G. Whalen, 1977. Molecular aspects of myogenesis. Curr. Top. Dev. Biol., 11: 61-114.
PubMed  |  

Musaro, A., K. McCullagh, A. Paul, L. Houghton and G. Dobrowolny et al., 2001. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet., 27: 195-200.
CrossRef  |  

Picard, B., L. Lefaucheur, C. Berri and M.J. Duclos, 2002. Muscle fibre ontogenesis in farm animal species. Reprod. Nutr. Dev., 42: 415-431.
CrossRef  |  PubMed  |  Direct Link  |  

Reed, S.A., P.B. Sandesara, S.M. Senf and A.R. Judge, 2012. Inhibition of FoxO transcriptional activity prevents muscle fibre atrophy during cachexia and induces hypertrophy. FASEB J., 26: 987-1000.

Rommel, C., S.C. Bodine, B.A. Clarke, R. Rossman and L. Nunez et al., 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol., 3: 1009-1013.

Sanchez, A.M.J., A. Csibi, A. Raibon, K. Cornille, S. Gay, H. Bernardi and R. Candau, 2012. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J. Cell. Biochem., 113: 695-710.
CrossRef  |  

Sandri, M., C. Sandri, A. Gilbert, C. Skurk and E. Calabria et al., 2004. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117: 399-412.
CrossRef  |  

Stitt, T.N., D. Drujan, B.A. Clarke, F. Panaro and Y. Timofeyva et al., 2004. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell, 14: 395-403.
CrossRef  |  

White, J.P., S. Gao, M.J. Puppa, S. Sato and S.L. Welle et al., 2013. Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol. Cell. Endocrinol., 365: 174-186.
CrossRef  |  Direct Link  |  

Zhao, J., J.J. Brault, A. Schild, P. Cao and M. Sandri et al., 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab., 6: 472-483.
CrossRef  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved