Veterinary Research

Year: 2011
Volume: 4
Issue: 4
Page No. 109 - 116

Melt Extruded PU Hollow Fibers for Nerve Regeneration: In vivo Study

Authors : G. Vozzi, F. Dini, S. Burchielli, C. Salvadori, C. De Maria, V. Chiono, G. Barsotti, G. Ciardelli, F. Carlucci and Rachele Roni

References

Battiston, B., S. Geuna, M. Ferrero and P. Tos, 2005. Nerve repair by means of tubulization: Literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery, 25: 258-267.
CrossRef  |  

Borkenhagen, M., R.C. Stoll, P. Neuenschwander, U.W. Suter and P. Aebischer, 1998. In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials, 18: 2155-2165.
PubMed  |  

Bruin, P., G.J. Venstra, A.J. Nijenhuis and A.J. Pennings, 1988. Design and synthesis of biodegradable poly(ester-urethane) elastomer networks composed of non-toxic building blocks. Makromol. Chem. Rapid Commun., 9: 589-594.
CrossRef  |  

Chalfoun, C.T., G.A. Wirth and G.R.D. Evans, 2006. Tissue engineered nerve constructs: Where do we stand. J. Cell. Mol. Med., 2: 309-317.
CrossRef  |  PubMed  |  

Ciardelli, G, A. Rechichi, P. Cerrai, M. Tricoli, N. Barbani and P. Giusti, 2004. Segmented polyurethanes for medical applications: Synthesis, characterization and in vitro enzymatic degradation studies. Macromol. Symp., 218: 261-271.
CrossRef  |  

Ciardelli, G. and V. Chiono, 2006. Materials for peripheral nerve regeneration. Macromol. Biosci., 6: 13-26.
CrossRef  |  PubMed  |  

Guan, J., K.L. Fujimoto, M.S. Sacks and W.R. Wagmer, 2005. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 26: 3961-3971.
CrossRef  |  PubMed  |  

Guelcher, S.A., 2008. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Eng. B: Rev., 1: 3-17.
CrossRef  |  

Gunatillake, P.A., G.F. Meijs and S.J. McCarthy, 2001. Developments in Design and Synthesis of Biostable Polyurethanes. In: Biomedical Applications of Polyurethanes, Vermette, P. (Ed.). Landes Bioscience, Georgetown, ISBN-13: 9781587060236, pp: 160-170.

Hausner, T., R. Schmidhammer, S. Zandieh, R. Hopf and A. Schultz et al., 2007. Nerve regeneration using tubular scaffolds from biodegradable polyurethane. Acta Neurochir. Suppl., 100: 69-72.
CrossRef  |  

Hirt, T.D., P. Neuenschwander and U.W. Suter, 1996. Synthesis of degradable, biocompatible and tough block-copolyesterurethanes. Macromol. Chem. Phys., 197: 4253-4268.
CrossRef  |  

Huang, Y.C. and Y.Y. Huang, 2006. Biomaterials and strategies for nerve regeneration. Artif. Organs, 30: 514-522.
CrossRef  |  PubMed  |  

Ijkema-Paassen, J., K. Jansen, A. Gramsbergen and M.F. Meek, 2004. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials, 25: 1583-1592.
CrossRef  |  PubMed  |  

Labrador, R.O., M. Buti and X. Navarro, 1998. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair. Exp. Neurol., 149: 243-252.
CrossRef  |  PubMed  |  

Lamba, N.M.K., K.A. Woodhouse, S.L. Cooper and M.D. Lelah, 1998. Polyurethanes in Biomedical Applications. CRC Press, New York, USA., ISBN-13: 9780849345173, pp: 205-241.

Millesi, H., 1991. Indication and Techniques of Nerve Grafting. In: Operative Nerve Repair and Reconstruction, Richard, H. and M.D. Gelberman (Eds.). Lippincott Williams and Wilkins, Philadelphia, PA., ISBN-13: 978-0397510740, pp: 525-544.

Millesi, H., G. Meissl and A. Berger, 1972. The interfascicular nerve-grafting of the median and ulnar nerves. J. Bone Joint Surg., 54: 727-750.
PubMed  |  Direct Link  |  

Nakamura, T., Y. Inada, S. Fukuda, M. Yoshitani and A. Nakada et al., 2004. Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube. Brain Res., 1027: 18-29.
CrossRef  |  PubMed  |  

Pfister, L.A., M. Papaloizos, H.P. Merkle and B. Gander, 2007. Nerve conduits and growth factor delivery in peripheral nerve repair. J. Peripher. Nerv. Syst., 12: 65-82.
CrossRef  |  

Pinchuk, L., 1994. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of biostable polyurethane. J. Biomater. Sci. Polym. Ed., 6: 225-267.
PubMed  |  

Rechichi, A., G. Ciardelli, M. D’Acunto, G. Vozzi and P. Giusti, 2008. Degradable block polyurethanes from nontoxic building blocks as scaffold materials to support cell growth and proliferation. J. Biomed. Mater. Res. A, 84: 847-855.
PubMed  |  

Saad, B., S. Matter, G. Ciardelli, G.K. Uhlschmid, M. Welti, P. Neuenschwander and U.W. Suter, 1996. Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products. J. Biomed. Mater. Res., 32: 355-366.
CrossRef  |  PubMed  |  

Saad, B., T.D. Hirt, M. Welti, G.K. Uhlschmid, P. Neuenschwander and U.W. Suter, 1997. Development of degradable polyesterurethanes for medical applications: In vitro and in vivo evaluations. J. Biomed. Mater. Res., 36: 65-74.
CrossRef  |  PubMed  |  

Skarja, G.A. and K.A. Woodhouse, 1998. Synthesis and characterization of degradable polyurethane elastomers containing and amino acid-based chain extender. J. Biomater. Sci. Polym. Ed., 9: 271-295.
PubMed  |  

Skarja, G.A. and K.A. Woodhouse, 2001. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J. Biomater. Sci. Polym. Ed., 12: 851-873.
PubMed  |  

Spaans, C.J., V.W. Belgraver and O. Rienstra, 2000. Solvent-free fabrication of micro-porus polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials, 21: 2453-2460.
CrossRef  |  PubMed  |  

Storey, R.F., J.S. Wiggins, K.A. Mauritz and A.D. Puckett, 2004. Bioabsorbable composites. II: Nontoxic, L-lysine-based poly(ester-urethane) matrix composites. Polym. Compos., 14: 17-25.
CrossRef  |  

Sunderland, S., 1991. Nerve injuries and their repair: A critical appraisal. Churchill Livingstone, London, ISBN-13: 9780443041617, Pages: 538.

Terzis, J.K., D.D. Sun and P.K. Thanos, 1997. Historical and basic science review: Past, present and future of nerve repair. J. Reconstr. Microsurg., 13: 215-225.
PubMed  |  

Verreck, G., I. Chun, Y. Li, R. Kataria and Q. Zhang et al., 2005. Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials, 26: 1307-1315.
CrossRef  |  PubMed  |  

Yang, F., R. Murugan, S. Ramakrishna, X. Wang, Y.X. Ma and S. Wang, 2004. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 25: 1891-1900.
CrossRef  |  PubMed  |  Direct Link  |  

Zdrahala, R.J. and I.J. Zdrahala, 1999. Biomedical applications of polyurethanes: A review of past promises, present realities and a vibrant future. J. Biomater. Appl., 14: 67-90.
CrossRef  |  PubMed  |  

Zhang, J.Y., E.J. Beckman, N.P. Piesco and S. Agarwal, 2002. A new peptide-based urethane polymer: Synthesis, biodegradation, and potential to support cell growth in vitro. Biomaterials, 21: 1247-1258.
CrossRef  |  PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved