Journal of Animal and Veterinary Advances

Year: 2012
Volume: 11
Issue: 24
Page No. 4553 - 4558

The Impact of Soil Available Phosphorus on the AM Fungi and the Organic Acids Exudation at Different Patches in Northern Steppe of China

Authors : Hanshu Zhou, Gaowen Yang and Yingjun Zhang

References

Alguacil, M.D.M., Z. Lozano, M.J. Campoy and A. Roldan, 2010. Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system. Soil Biol. Biochem., 42: 1114-1122.
CrossRef  |  

Ayres, R.L., A.C. Gange and D.M. Aplin, 2006. Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality, of Plantago lanceolata L. J. Ecol., 94: 285-294.
CrossRef  |  

Bolan, N.S., 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil, 134: 189-207.
CrossRef  |  Direct Link  |  

Caldwell, M.M., D.M. Eissenstat, J.H. Richards and M.F. Allen, 1985. Competition for phosphorus: Differential uptake from dual-isotope-labeled soil interspaces between shrub and grass. Science, 229: 384-386.
CrossRef  |  PubMed  |  

Cameron, D.D., 2010. Arbuscular mycorrhizal fungi as (agro)ecosystem engineers. Plant Soil, 333: 1-5.
CrossRef  |  Direct Link  |  

Dobson, A. and M. Crawley, 1994. Pathogens and the structure of plant communities. Trends Ecol. Evol., 9: 393-398.
CrossRef  |  

Fitter, A.H., 1977. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol., 79: 119-125.
CrossRef  |  

Hall, I.R., 1978. Effects of endomycorrhizas on competitive ability of white clover. N. Z. J. Agric. Res., 21: 509-515.
CrossRef  |  

Hinsinger, P., 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil, 237: 173-195.
CrossRef  |  Direct Link  |  

Imas, P., B. Bar-Yosef, U. Kafkafi and R. Ganmore-Neumann, 1997. Phosphate induced carboxylate and proton release by tomato roots. Plant Soil, 191: 35-39.
CrossRef  |  

Jones, D.L. and D.S. Brassington, 1998. Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur. J. Soil Sci., 49: 447-455.
CrossRef  |  

Jones, D.L., 1998. Organic acids in the rhizosphere: A critical review. Plant Soil, 205: 25-44.
CrossRef  |  

Koide, R.T. and M.G. Li, 1990. On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol., 114: 59-64.
CrossRef  |  

Lipton, D.S., R.W. Blanchar and D.G. Blevins, 1987. Citrate, malate and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol., 85: 315-317.
CrossRef  |  Direct Link  |  

Marler, M.J., C.A. Zabinski and R.M. Callaway, 1999. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology, 80: 1180-1186.
CrossRef  |  Direct Link  |  

McGonigle, T.P., M.H. Miller, D.G. Evans, G.L. Fairchild and J.A. Swan, 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol., 115: 495-501.
CrossRef  |  Direct Link  |  

Moora, M. and M. Zobel, 1996. Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 108: 79-84.
CrossRef  |  

Moora, M., M. Opik, R. Sen and M. Zobel, 2004. Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Funct. Ecol., 18: 554-562.
CrossRef  |  

Raghothama, K.G. and A.S. Karthikeyan, 2005. Phosphate Acquisition. In: Root Physiology: From Gene to Function, Lambers, H. and T.D. Colmer (Eds.). Springer, Dordrecht, The Netherlands, ISBN-13: 9781402040986, pp: 37-49.

Ryan, P.R. and E. Delhaize, 2001. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol., 52: 527-560.
CrossRef  |  Direct Link  |  

Schachtman, D.P., R.J. Reid and S.M. Ayling, 1998. Phosphorus uptake by plants from soil to cell. Plant Physiol., 116: 447-453.
Direct Link  |  

Schwab, S.M., J.A. Menge and T.L. Robert, 1983. Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular-arbuscular mycorrhiza formation. Plant Physiol., 73: 761-765.
PubMed  |  Direct Link  |  

Strom, L., A.G. Owen, D.L. Godbold and D.L. Jones, 2002. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol. Biochem., 34: 703-710.
CrossRef  |  

Treseder, K.K. and M.F. Allen, 2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A model and field test. New Phytol., 155: 507-515.
CrossRef  |  Direct Link  |  

Van der Heijden, M.G.A., J.N. Klironomos, M. Ursic, P. Moutoglis and R. Streitwolf-Engel et al., 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396: 69-72.
CrossRef  |  Direct Link  |  

Vance, C.P., C. Uhde-Stone and D.L. Allan, 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol., 157: 423-447.
CrossRef  |  Direct Link  |  

Wilson, G.W.T. and D.C. Hartnett, 1997. Effects of mycorrhizae on plant growth and dynamics in experimental tall grass prairie microcosms. Am. J. Bot., 84: 478-482.
Direct Link  |  

Wouterlood, M., G.R. Cawthray, T.T. Scanlon, H. Lambers and E.J. Veneklaas, 2004. Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. New Phytol., 162: 745-753.
CrossRef  |  

Wu, E., C.X. Li, Y. Zhang, C.M. Wang and J.Y. Yun, 2009. Effect of grassland degradation on arbuscular mycorrhizal symbiosis of Leymus chinensis (Trin.) Tzvel. in typical steppe. Acta Agrestia Sinica, 17: 731-734.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved