Journal of Animal and Veterinary Advances

Year: 2014
Volume: 13
Issue: 7
Page No. 460 - 469

Amino Acids Sensing in vivo, a Significant Research Area on Amino Acid Nutrition

Authors : Yongfei Wang, Zemeng Feng, Yuzhe Zhang and Fang Jun

References

Abdel-Sater, F., I. Iraqui, A. Urrestarazu and B. Andre, 2004. The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae. Genetics, 166: 1727-1739.
CrossRef  |  PubMed  |  Direct Link  |  

Abdel-Sater, F., M. El Bakkoury, A. Urrestarazu, S. Vissers and B. Andre, 2004. Amino acid signaling in yeast: casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol. Cell. Biol., 24: 9771-9785.
CrossRef  |  PubMed  |  Direct Link  |  

Adibi, S.A. and D.W. Mercer, 1973. Protein digestion in human intestine as reflected in luminal, mucosal and plasma amino acid concentrations after meals. J. Clin. Invest., 52: 1586-1594.
CrossRef  |  Direct Link  |  

Andreasson, C. and P.O. Ljungdahl, 2002. Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev., 16: 3158-3172.
CrossRef  |  PubMed  |  Direct Link  |  

Andreasson, C., S. Heessen and P.O. Ljungdahl, 2006. Regulation of transcription factor latency by receptor-activated proteolysis. Genes Dev., 20: 1563-1568.
CrossRef  |  PubMed  |  Direct Link  |  

Avruch, J., X. Long, S. Ortiz-Vega, J. Rapley, A. Papageorgiou and N. Dai, 2009. Amino acid regulation of TOR complex 1. Am. J. Physiol. Endocrinol. Metab., 296: E592-E602.
CrossRef  |  Direct Link  |  

Bernard, F. and B. Andre, 2001. Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Mol. Microbiol., 41: 489-502.
CrossRef  |  PubMed  |  Direct Link  |  

Bernard, F. and B. Andre, 2001. Ubiquitin and the SCFGrr1 ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Lett., 11: 81-85.
CrossRef  |  PubMed  |  Direct Link  |  

Betz, H., J. Kuhse, V. Schmieden, B. Laube, J. Kirsch and R.J. Harvey, 1999. Structure and functions of inhibitory and excitatory glycine receptors. Ann. N.Y. Acad. Sci., 868: 667-676.
CrossRef  |  PubMed  |  Direct Link  |  

Beugnet, A., A.R. Tee, P.M. Taylor and C.G. Proud, 2003. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem. J., 372: 555-566.
CrossRef  |  PubMed  |  Direct Link  |  

Bhaskar, P.T. and N. Hay, 2007. The two TORCs and Akt. Dev. Cell, 12: 487-502.
CrossRef  |  Direct Link  |  

Busque, S.M., J.E. Kerstetter, J.P. Geibel and K. Insogna, 2005. L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am. J. Physiol. Gastrointest. Liver Physiol., 289: G664-G669.
CrossRef  |  PubMed  |  Direct Link  |  

Carter, C.W., 1993. Cognition, mechanism and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem., 62: 715-748.
CrossRef  |  PubMed  |  Direct Link  |  

Cecconi, F. and B. Levine, 2008. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev. Cell, 15: 344-357.
CrossRef  |  Direct Link  |  

Chattopadhyay, N., C.P. Ye, T. Yamaguchi, O. Kifor, P.M. Vassilev, R. Nishimura and E.M. Brown, 1998. Extracellular calcium-sensing receptor in rat oligodendrocytes: Expression and potential role in regulation of cellular proliferation and an outward K+ channel. Glia, 24: 449-458.
CrossRef  |  PubMed  |  Direct Link  |  

Chattopadhyay, N., G. Legradi, M. Bai, O. Kifor and C. Ye et al., 1997. Calcium-sensing receptor in the rat hippocampus: A developmental study. Brain Res. Dev. Brain Res., 100: 13-21.
CrossRef  |  PubMed  |  Direct Link  |  

Chaveroux, C., S. Lambert-Langlais, Y. Cherasse, J. Averous and L. Parry et al., 2010. Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie, 92: 736-745.
CrossRef  |  

Cheng, I., I. Qureshi, N. Chattopadhyay, A. Qureshi and R.R. Butters et al., 1999. Expression of an extracellular calcium-sensing receptor in rat stomach. Gastroenterology, 116: 118-126.

Christie, G.R., E. Hajduch, H.S. Hundal, C.G. Proud and P.M. Taylor, 2002. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycin-dependent manner. J. Biol. Chem., 277: 9952-9957.
CrossRef  |  Direct Link  |  

Cohen, S.A. and D.P. Michaud, 1993. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal. Biochem., 211: 279-287.
CrossRef  |  PubMed  |  Direct Link  |  

Conigrave, A.D. and E.M. Brown, 2006. Taste receptors in the gastrointestinal tract. II. L-amino acid sensing by calcium-sensing receptors: Implications for GI physiology. Am. J. Physiol. Gastrointest. Liver Physiol., 291: G753-G761.
PubMed  |  

Conigrave, A.D., H.C. Mun, L. Delbridge, S.J. Quinn, M. Wilkinson and E.M. Brown, 2004. L-Amino acids regulate parathyroid hormone secretion. J. Biol. Chem., 279: 38151-38159.
CrossRef  |  PubMed  |  Direct Link  |  

Csendes, A. and M.I. Grossman, 1972. D- and L-isomers of serine and alanine equally effective as releasers of gastrin. Experientia, 28: 1306-1307.
CrossRef  |  Direct Link  |  

De Boer, M., P.S. Nielsen, J.P. Bebelman, H. van Heerikhuizen, H.A. Andersen and R.J. Planta, 2000. Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae. Nucl. Acids Res., 28: 974-981.
CrossRef  |  Direct Link  |  

Dickinson, J.M. and B.B. Rasmussen, 2011. Essential amino acid sensing, signaling and transport in the regulation of human muscle protein metabolism. Curr. Opin. Clin. Nutr. Metab. Care, 14: 83-88.
Direct Link  |  

Didion, T., B. Regenberg, M.U. Jorgensen, M.C. Kielland-Brandt and H.A. Andersen, 1998. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol., 27: 643-650.
CrossRef  |  

Eckert‐Boulet, N., P.S. Nielsen, C. Friis, M.M. dos Santos, J. Nielsen, M.C. Kielland-Brandt and B. Regenberg, 2004. Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p. Yeast, 21: 635-648.
CrossRef  |  

Eckert-Boulet, N., K. Larsson, B. Wu, P. Poulsen, B. Regenberg, J. Nielsen and M.C. Kielland-Brandt, 2006. Deletion of RTS1, encoding a regulatory subunit of protein phosphatase 2A, results in constitutive amino acid signaling via increased Stp1p processing. Eukaryotic Cell, 5: 174-179.
CrossRef  |  

Felder, C.B., R.C. Graul, A.Y. Lee, H.P. Merkle and W. Sadee, 1999. The Venus flytrap of periplasmic binding proteins: An ancient protein module present in multiple drug receptors. AAps Pharmsci., 1: 7-26.
CrossRef  |  

Findlay, G., L. Yan, J. Procter, V. Mieulet and R. Lamb, 2007. A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling. Biochem. J., 403: 13-20.
CrossRef  |  

Forsberg, H. and P.O. Ljungdahl, 2001. Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids. Mol. Cell. Biol., 21: 814-826.
CrossRef  |  

Forsberg, H. and P.O. Ljungdahl, 2001. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet., 40: 91-109.
CrossRef  |  

Forsberg, H., C.F. Gilstring, A. Zargari, P. Martinez and P.O. Ljungdahl, 2001. The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol. Microbiol., 42: 215-228.
CrossRef  |  

Forsberg, H., M. Hammar, C. Andreasson, A. Moliner and P.O. Ljungdahl, 2001. Suppressors of ssy1 and ptr3 null mutations define novel amino acid sensor-independent genes in Saccharomyces cerevisiae. Genetics, 158: 973-988.
Direct Link  |  

Gaber, R.F., K. Ottow, H.A. Andersen and M.C. Kielland-Brandt, 2003. Constitutive and hyperresponsive signaling by mutant forms of Saccharomyces cerevisiae amino acid sensor Ssy1. Eukaryotic Cell, 2: 922-929.
CrossRef  |  

Geibel, J.P., C.A. Wagner, R. Caroppo, I. Qureshi and J. Gloeckner et al., 2001. The stomach divalent ion-sensing receptor scar is a modulator of gastric acid secretion. J. Biol. Chem., 276: 39549-39552.
CrossRef  |  

Gietzen, D.W., S. Hao and T.G. Anthony, 2007. Mechanisms of food intake repression in indispensable amino acid deficiency. Annu. Rev. Nutr., 27: 63-78.
CrossRef  |  

Goberdhan, D.C., 2010. Intracellular amino acid sensing and mTORC1-regulated growth: New ways to block an old target? Curr. Opin. Invest. Drugs, 11: 1360-1367.
Direct Link  |  

Goberdhan, D.C., D. Meredith, C.R. Boyd and C. Wilson, 2005. PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids. Development, 132: 2365-2375.
CrossRef  |  

Guo, F. and D.R. Cavener, 2007. The GCN2 eIF2α kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab., 5: 103-114.
CrossRef  |  

Hao, S., J.W. Sharp, C.M. Ross-Inta, B.J. McDaniel and T.G. Anthony et al., 2005. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science, 307: 1776-1778.
CrossRef  |  

Harding, H.P., I. Novoa, Y. Zhang, H. Zeng, R. Wek, M. Schapira and D. Ron, 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell, 6: 1099-1108.
CrossRef  |  

Heitman, J., N.R. Movva and M.N. Hall, 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 253: 905-909.
CrossRef  |  

Heublein, S., S. Kazi, M.H. Ogmundsdottir, E.V. Attwood and S. Kala et al., 2010. Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene, 29: 4068-4079.
CrossRef  |  

Hinnebusch, A.G., 2005. Translational regulation of gcn4 and the general amino Acid control of yeast. Annu. Rev. Microbiol., 59: 407-450.
CrossRef  |  

Hofer, A.M. and E.M. Brown, 2003. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol., 4: 530-538.
CrossRef  |  

Hyde, R., P. Taylor and H. Hundal, 2003. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem. J., 373: 1-18.
CrossRef  |  

Iraqui, I., S. Vissers, F. Bernard, J.O. de Craene, E. Boles, A. Urrestarazu and B. Andre, 1999. Amino acid signaling in Saccharomyces cerevisiae: A permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol. Cell. Biol., 19: 989-1001.
Direct Link  |  

Jorgensen, M.U., C. Gjermansen, H.A. Andersen and M.C. Kielland-Brandt, 1997. STP1, a gene involved in pre-tRNA processing in yeast, is important for amino-acid uptake and transcription of the permease gene BAP2. Curr. Genet., 31: 241-247.
CrossRef  |  

Jorgensen, M.U., M.B. Bruun, T. Didion and M.C. Kielland‐Brandt, 1998. Mutations in five loci affecting GAP1‐independent uptake of neutral amino acids in yeast. Yeast, 14: 103-114.
CrossRef  |  

Kim, E., 2009. Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr. Res. Pract., 3: 64-71.
CrossRef  |  

Kimball, S.R. and L.S. Jefferson, 1995. Allosteric regulation of eukaryotic initiation factor eIF-2B by adenine nucleotides. Biochem. Biophys. Res. Commun., 212: 1074-1081.
CrossRef  |  

Klasson, H., G.R. Fink and P.O. Ljungdahl, 1999. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell. Biol., 19: 5405-5416.
Direct Link  |  

Kodama, Y., F. Omura, K. Takahashi, K. Shirahige and T. Ashikari, 2002. Genome-wide expression analysis of genes affected by amino acid sensor Ssy1p in Saccharomyces cerevisiae. Curr. Genet., 41: 63-72.
CrossRef  |  

Koehnle, T.J., M.C. Russell and D.W. Gietzen, 2003. Rats rapidly reject diets deficient in essential amino acids. J. Nutr., 133: 2331-2335.
Direct Link  |  

Kogan, K., E.D. Spear, C.A. Kaiser and D. Fass, 2010. Structural conservation of components in the amino acid sensing branch of the TOR pathway in yeast and mammals. J. Mol. Biol., 402: 388-398.
CrossRef  |  

Kraidlova, L., G. Van Zeebroeck, P. Van Dijck and H. Sychrova, 2011. The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. Eukaryotic Cell, 10: 1219-1229.
CrossRef  |  Direct Link  |  

Kuang, D., Y. Yao, J. Lam, R.G. Tsushima and D.R. Hampson, 2005. Cloning and characterization of a Family C orphan G-protein coupled receptor. J. Neurochem., 93: 383-391.
CrossRef  |  

Kuang, D., Y. Yao, M. Wang, N. Pattabiraman, L.P. Kotra and D.R. Hampson, 2003. Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors. J. Biol. Chem., 278: 42551-42559.
CrossRef  |  Direct Link  |  

Kugimiya, A., M. Morii and T. Ohtsuki, 2008. Amino acid sensing using aminoacyl-tRNA synthetase. Anal. Biochem., 378: 90-92.
CrossRef  |  

Laplante, M. and D.M. Sabatini, 2009. mTOR signaling at a glance. J. Cell Sci., 122: 3589-3594.
CrossRef  |  Direct Link  |  

Lavan, D.A., T. McGuire and R. Langer, 2003. Small-scale systems for in vivo drug delivery. Nat. Biotechnol., 21: 1184-1191.
CrossRef  |  Direct Link  |  

Liu, Z., J. Thornton, M. Spirek and R.A. Butow, 2008. Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol. Cell. Biol., 28: 551-563.
CrossRef  |  Direct Link  |  

Louis-Sylvestre, J., 1975. Mechanisms of dietary selection in man: Preferences and aversions. Ann. Nutr. Aliment, 30: 331-339.
PubMed  |  

Lynch, C.J., 2001. Role of leucine in the regulation of mTOR by amino acids: Revelations from structure-activity studies. J. Nutr., 131: 861S-865S.
Direct Link  |  

Mackenzie, B. and J.D. Erickson, 2004. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Archiv, 447: 784-795.
CrossRef  |  

Matthews, J.C. and K.J. Anderson, 2002. Recent advances in amino acid transporters and excitatory amino acid receptors. Curr. Opin. Clin. Nutr. Metab. Care, 5: 77-84.
Direct Link  |  

Maurin, A.C., C. Jousse, J. Averous, L. Parry and A. Bruhat et al., 2005. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab., 1: 273-277.
CrossRef  |  

Michalodimitrakis, K.M., V. Sourjik and L. Serrano, 2005. Plasticity in amino acid sensing of the chimeric receptor Taz. Mol. Microbiol., 58: 257-266.
CrossRef  |  

Mun, H.C., A.H. Franks, E.L. Culverston, K. Krapcho, E.F. Nemeth and A.D. Conigrave, 2004. The Venus fly trap domain of the extracellular Ca2+-sensing receptor is required for L-amino acid sensing. J. Biol. Chem., 279: 51739-51744.
CrossRef  |  Direct Link  |  

Mun, H.C., E.L. Culverston, A.H. Franks, C.A., Collyer R.J. Clifton-Bligh and A.D. Conigrave, 2005. A double mutation in the extracellular Ca2+-sensing receptor's venus flytrap domain that selectively disables L-amino acid sensing. J. Biol. Chem., 280: 29067-29072.
CrossRef  |  Direct Link  |  

Nakajima, H., H. Koyama and H. Suzuki, 1991. Immobilization of Pseudomonas L-Phe oxidase on a nylon membrane for possible use as an amino acid sensor. Agric. Biol. Chem., 55: 3117-3118.
PubMed  |  

Nakashima, K., A. Ishida, M. Yamazaki and H. Abe, 2005. Leucine suppresses myofibrillar proteolysis by down-regulating ubiquitin-proteasome pathway in chick skeletal muscles. Biochem. Biophys. Res. Commun., 336: 660-666.
CrossRef  |  PubMed  |  

Nelissen, B., R. Wachter and A. Goffeau, 1997. Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol. Rev., 21: 113-134.
CrossRef  |  

Nelson, G., J. Chandrashekar, M.A. Hoon, L. Feng, G. Zhao, N.J. Ryba and C.S. Zuker, 2002. An amino-acid taste receptor. Nature, 416: 199-202.
CrossRef  |  Direct Link  |  

Nielsen, P., B. Van Den Hazel, T. Didion, M. De Boer and M. Jorgensen et al., 2001. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol. Gen. Genet., 264: 613-622.
CrossRef  |  

Nielsen, P.S., B. van den Hazel, T. Didion, M. de Boer, M. Jorgensen, R.J. Planta, M.C. Kielland-Brandt and H.A. Andersen, 2001. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol. Gen. Genet., 264: 613-622.
PubMed  |  

Noguchi, Y., Q.W. Zhang, T. Sugimoto, Y. Furuhata and R. Sakai et al., 2006. Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am. J. Clin. Nutr., 83: 513S-519S.
Direct Link  |  

Paddon-Jones, D., M. Sheffield-Moore, X.J. Zhang, E. Volpi and S.E. Wolf et al., 2004. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am. J. Physiol. Endocrinol. Metab., 286: E321-E328.
PubMed  |  

Pattingre, S., L. Espert, M. Biard-Piechaczyk and P. Codogno, 2008. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie, 90: 313-323.
CrossRef  |  Direct Link  |  

Poulsen, P., B. Wu, R.F. Gaber and M.C. Kielland-Brandt, 2005. Constitutive signal transduction by mutant Ssy5p and Ptr3p components of the SPS amino acid sensor system in Saccharomyces cerevisiae. Eukaryotic Cell, 4: 1116-1124.
CrossRef  |  PubMed  |  Direct Link  |  

Poulsen, P., L. Lo Leggio and M.C. Kielland-Brandt, 2006. Mapping of an internal protease cleavage site in the Ssy5p component of the amino acid sensor of Saccharomyces cerevisiae and functional characterization of the resulting pro- and protease domains by gain-of-function genetics. Eukaryotic Cell, 5: 601-608.
CrossRef  |  PubMed  |  Direct Link  |  

Rabinovitz, M., 1992. The pleiotypic response to amino acid deprivation is the result of interactions between components of the glycolysis and protein synthesis pathways. FEBS Lett., 302: 113-116.
CrossRef  |  PubMed  |  Direct Link  |  

Ruat, M., M.E. Molliver, A.M. Snowman and S.H. Snyder, 1995. Calcium sensing receptor: Molecular cloning in rat and localization to nerve terminals. Proc. Natl. Acad. Sci. USA., 92: 3161-3165.
CrossRef  |  Direct Link  |  

Sancak, Y., T.R. Peterson, Y.D. Shaul, R.A. Lindquist, C.C. Thoreen, L. Bar-Peled and D.M. Sabatini, 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science, 320: 1496-1501.
CrossRef  |  Direct Link  |  

Sarbassov, D.D., S.M. Ali, D.H. Kim, D.A. Guertin and R.R. Latek et al., 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol., 14: 1296-1302.
CrossRef  |  PubMed  |  Direct Link  |  

Sarbassov, D.D., S.M. Ali, S. Sengupta, J.H. Sheen and P.P. Hsu et al., 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell, 22: 159-168.
CrossRef  |  PubMed  |  Direct Link  |  

Shin, C.S., S.Y. Kim and W.K. Huh, 2009. TORC1 controls degradation of the transcription factor Stp1, a key effector of the SPS amino-acid-sensing pathway in Saccharomyces cerevisiae. J. Cell Sci., 122: 2089-2099.
CrossRef  |  PubMed  |  Direct Link  |  

Singh, L.P. and A.J. Wahba, 1995. Allosteric activation of rabbit reticulocyte guanine nucleotide exchange factor activity by sugar phosphates and inositol phosphates. Biochem. Biophys. Res. Commun., 217: 616-623.
PubMed  |  Direct Link  |  

Speca, D.J., D.M. Lin, P.W. Sorensen, E.Y. Isacoff, J. Ngai and A.H. Dittman, 1999. Functional identification of a goldfish odorant receptor. Neuron, 23: 487-498.
PubMed  |  

Spielewoy, N., K. Flick, T.I. Kalashnikova, J.R. Walker and C. Wittenberg, 2004. Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Mol. Cell. Biol., 24: 8994-9005.
CrossRef  |  PubMed  |  Direct Link  |  

Strunz, U.T., J.H. Walsh and M.I. Grossman, 1978. Stimulation of gastrin release in dogs by individual amino acids. Proc. Soc. Exp. Biol. Med., 157: 440-441.
PubMed  |  

Tan, B., Y. Yin, Z. Liu, X. Li and H. Xu et al., 2009. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids, 37: 169-175.
CrossRef  |  Direct Link  |  

Tumusiime, S., C. Zhang, M.S. Overstreet and Z. Liu, 2011. Differential regulation of transcription factors Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing pathway. J. Biol. Chem., 286: 4620-4631.
CrossRef  |  PubMed  |  Direct Link  |  

Uetz, P., L. Giot, G. Cagney, T.A. Mansfield and R.S. Judson et al., 2000. A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature, 403: 623-627.
CrossRef  |  Direct Link  |  

Utsumi, R., R.E. Brissette, A. Rampersaud, S.A. Forst, K. Oosawa and M. Inouye, 1989. Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science, 245: 1246-1249.
CrossRef  |  Direct Link  |  

Wek, S.A., S. Zhu and R.C. Wek, 1995. histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol. Cell Biol., 15: 4497-4506.
PubMed  |  Direct Link  |  

Wellendorph, P. and H. Brauner-Osborne, 2004. Molecular cloning, expression and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene, 335: 37-46.
CrossRef  |  PubMed  |  Direct Link  |  

Wellendorph, P., K.B. Hansen, A. Balsgaard, J.R. Greenwood, J. Egebjerg and H. Brauner-Osborne, 2005. Deorphanization of GPRC6A: A promiscuous L-alpha-amino acid receptor with preference for basic amino acids. Mol. Pharmacol., 67: 589-597.
CrossRef  |  PubMed  |  Direct Link  |  

Wellendorph, P., L.D. Johansen and H. Brauner-Osborne, 2009. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol. Pharmacol., 76: 453-465.
CrossRef  |  PubMed  |  Direct Link  |  

Young, S.H., O. Rey, C. Sternini and E. Rozengurt, 2010. Amino acid sensing by enteroendocrine STC-1 cells: Role of the Na+-coupled neutral amino acid transporter 2. Am. J. Physiol. Cell Physiol., 298: C1401-C1413.
CrossRef  |  PubMed  |  Direct Link  |  

Zhang, P., B.C. McGrath, J. Reinert, D.S. Olsen and L. Lei et al., 2002. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol. Cell. Biol., 22: 6681-6688.
PubMed  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved