Journal of Animal and Veterinary Advances

Year: 2018
Volume: 17
Issue: 5
Page No. 111 - 121

Key Proteins at the Interface of Bioenergetics and Mitochondrial Function

Authors : W.A. Baldassini, B.D. Dauria, J.J. Ramsey, R.H . Branco, S.F.M Bonilha and D.P.D. Lanna

References

Asano, H., T. Yamada, O. Hashimoto, T. Umemoto and R. Sato et al., 2013. Diet-induced changes in UCP1 expression in bovine adipose tissues. Gen. Comp. Endocrinol., 184: 87-92.
PubMed  |  Direct Link  |  

Azzu, V. and M.D. Brand, 2010. The on-off switches of the mitochondrial uncoupling proteins. Trends Biochem. Sci., 35: 298-307.
CrossRef  |  

Azzu, V., M. Jastroch, A.S. Divakaruni and M.D. Brand, 2010. The regulation and turnover of mitochondrial uncoupling proteins. Biochim. Biophys. Acta Bioenerg., 1797: 785-791.
CrossRef  |  PubMed  |  Direct Link  |  

Baldassini, W.A., J.J. Ramsey, K. Hagopian and D.P.D. Lanna, 2017. The influence of Shc proteins and high‐fat diet on energy metabolism of mice. Cell Biochem. Funct., 35: 527-537.
CrossRef  |  PubMed  |  Direct Link  |  

Bartosz, G., 2009. Reactive oxygen species: Destroyers or messengers. Biochem. Pharmacol., 77: 1303-1315.
CrossRef  |  PubMed  |  

Basarab, J.A., K.A. Beauchemin, V.S. Baron, K.H. Ominski and L.L. Guan et al., 2013. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production. Anim., 7: 303-315.
CrossRef  |  PubMed  |  Direct Link  |  

Bellisario, V., A. Berry, S. Capoccia, C. Raggi and P. Panetta et al., 2014. Gender-dependent resiliency to stressful and metabolic challenges following prenatal exposure to high-fat diet in the p66Shc−/− mouse. Front. Behav. Neurosci., 8: 1-12.
CrossRef  |  PubMed  |  Direct Link  |  

Berniakovich, I., M. Trinei, M. Stendardo, E. Migliaccio and S. Minucci et al., 2008. p66Shc-generated oxidative signal promotes fat accumulation. J. Biol. Chem., 283: 34283-34293.
PubMed  |  Direct Link  |  

Betts, D.H., N.T. Bain and P. Madan, 2014. The p66Shc adaptor protein controls oxidative stress response in early bovine embryos. PLoS One, 9: 1-18.
PubMed  |  Direct Link  |  

Bottje, W. and B.W. Kong, 2013. Cell Biology symposium: Feed efficiency; Mitochondrial function to global gene expression. J. Anim. Sci., 91: 1582-1593.
CrossRef  |  PubMed  |  Direct Link  |  

Bottje, W.G. and G.E. Carstens, 2009. Association of mitochondrial function and feed efficiency in poultry and livestock species. J. Anim. Sci., 87: E48-E63.
CrossRef  |  PubMed  |  Direct Link  |  

Bottje, W.G. and G.E. Carstens, 2012. Variation in Metabolism: Biological Efficiency of Energy Production and Utilization that Affects Feed Efficiency. In: Feed Efficiency in the Beef Industry, Hill, R.A. (Ed.). John Wiley & Sons, Hoboken, New Jersey, USA., pp: 251-273.

Bouillaud, F., M.C. Alves-Guerra and D. Ricquier, 2016. UCPs, at the interface between bioenergetics and metabolism. Biochim. Biophys. Acta Mol. Cell Res., 1863: 2443-2456.
CrossRef  |  PubMed  |  Direct Link  |  

Camici, G.G., M. Schiavoni, P. Francia, M. Bachschmid and I. Martin-Padura et al., 2007. Genetic deletion of p66Shc adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc. National Acad. Sci., 104: 5217-5222.
CrossRef  |  Direct Link  |  

Casal, A., M. Veyga, A.L. Astessiano, A.C. Espasandin and A.I. Trujillo et al., 2014. Visceral organ mass, cellularity indexes and expression of genes encoding for mitochondrial respiratory chain proteins in pure and crossbred mature beef cows grazing different forage allowances of native pastures. Livestock Sci., 167: 195-205.
CrossRef  |  Direct Link  |  

Clapham, J.C., J.R. Arch, H. Chapman, A. Haynes and C. Lister et al., 2000. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nat., 406: 415-418.
CrossRef  |  PubMed  |  Direct Link  |  

Divakaruni, A.S. and M.D. Brand, 2011. The regulation and physiology of mitochondrial proton leak. Physiol., 26: 192-205.
CrossRef  |  PubMed  |  Direct Link  |  

Echtay, K.S., 2007. Mitochondrial uncoupling proteins-what is their physiological role?. Free Radical Biol. Med., 43: 1351-1371.
PubMed  |  Direct Link  |  

Erlanson-Albertsson, C., 2003. The role of uncoupling proteins in the regulation of metabolism. Acta Physiol. Scand., 178: 405-412.
CrossRef  |  PubMed  |  Direct Link  |  

Fonseca, L.F.S., D.F.J. Gimenez, M.E.Z. Mercadante, S.F.M. Bonilha and J.A. Ferro et al., 2015. Expression of genes related to mitochondrial function in Nellore cattle divergently ranked on residual feed intake. Mol. Biol. Rep., 42: 559-565.
CrossRef  |  PubMed  |  Direct Link  |  

Gomes, R.C., R.D. Sainz, S.L. Silva, M.C. Cesar and M.N. Bonin et al., 2012. Feedlot performance, feed efficiency reranking, carcass traits, body composition, energy requirements, meat quality and calpain system activity in Nellore steers with low and high residual feed intake. Livestock Sci., 150: 265-273.
Direct Link  |  

Grubbs, J.K., A.N. Fritchen, E. Huff-Lonergan, N.K. Gabler and S.M. Lonergan, 2013. Selection for residual feed intake alters the mitochondria protein profile in pigs. J. Proteomics, 80: 334-345.
PubMed  |  Direct Link  |  

Grubbs, J.K., E. Huff-Lonergan, N.K. Gabler, J.C.M. Dekkers and S.M. Lonergan, 2014. Liver and skeletal muscle mitochondria proteomes are altered in pigs divergently selected for residual feed intake. J. Anim. Sci., 92: 1995-2007.
CrossRef  |  PubMed  |  Direct Link  |  

Hagopian, K., A.A. Tomilov, K. Kim, G.A. Cortopassi and J.J. Ramsey, 2015. Key glycolytic enzyme activities of skeletal muscle are decreased under Fed and Fasted states in mice with knocked down levels of Shc proteins. PloS One, 10: 1-21.
CrossRef  |  PubMed  |  Direct Link  |  

Hagopian, K., A.A. Tomilov, N. Tomilova, K. Kim and S.L. Taylor et al., 2012. Shc proteins influence the activities of enzymes involved in fatty acid oxidation and ketogenesis. Metab., 61: 1703-1713.
CrossRef  |  PubMed  |  Direct Link  |  

Hagopian, K., J.J. Ramsey and R. Weindruch, 2003. Caloric restriction increases gluconeogenic and transaminase enzyme activities in mouse liver. Exp. Gerontology, 38: 267-278.
CrossRef  |  PubMed  |  Direct Link  |  

Hagopian, K., K. Kim, J.A. Lopez-Dominguez, A.A. Tomilov and G.A. Cortopassi et al., 2016. Mice with low levels of Shc proteins display reduced glycolytic and increased gluconeogenic activities in liver. Biochem. Biophys. Rep., 7: 273-286.
PubMed  |  Direct Link  |  

Herd, R.M. and P.F. Arthur, 2009. Physiological basis for residual feed intake. J. Anim. Sci., 87: E64-E71.
PubMed  |  

Herd, R.M., V.H. Oddy and E.C. Richardson, 2004. Biological basis for variation in residual feed intake in beefcattle. 1. Review of potential mechanisms. Aust. J. Exp. Agric., 44: 423-430.

Hudson, N.J., W.G. Bottje, R.J. Hawken, B. Kong and R. Okimoto et al., 2017. Mitochondrial metabolism: A driver of energy utilisation and product quality?. Anim. Prod. Sci., 57: 2204-2215.
CrossRef  |  Direct Link  |  

Kim, W. and S. Seo, 2012. Sequencing of the cattle genome toward finding ways to increase feed efficiency of cattle. J. Anim. Vet. Adv., 11: 3223-3227.
Direct Link  |  

Koch, R.M., L.A. Swiger, D. Chambers and K.E. Gregory, 1963. Efficiency of feed use in beef cattle. J. Anim. Sci., 22: 486-494.
Direct Link  |  

Kolath, W.H., M.S. Kerley, J.W. Golden and D.H. Keisler, 2006. The relationship between mitochondrial function and residual feed intake in Angus steers. J. Anim. Sci., 84: 861-865.
Direct Link  |  

Kolath, W.H., M.S. Kerley, J.W. Golden and D.H. Keisler, 2006. The relationship between mitochondrial function and residual feed intake in Angus steers. J. Anim. Sci., 84: 861-865.
Direct Link  |  

Kolath, W.H., M.S. Kerley, J.W. Golden, S.A. Shahid and G.S. Johnson, 2006. The relationships among mitochondrial uncoupling protein 2 and 3 expression, mitochondrial deoxyribonucleic acid single nucleotide polymorphisms and residual feed intake in Angus steers. J. Anim. Sci., 84: 1761-1766.
PubMed  |  Direct Link  |  

Li, B., L.A. Nolte, J.S. Ju, D.H. Han and T. Coleman et al., 2000. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med., 6: 1115-1120.
CrossRef  |  PubMed  |  Direct Link  |  

Mailloux, R.J. and M.E. Harper, 2011. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radical Biol. Med., 51: 1106-1115.
CrossRef  |  PubMed  |  Direct Link  |  

Migliaccio, E., M. Giorgio, S. Mele, G. Pelicci and P. Reboldi et al., 1999. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402: 309-313.
CrossRef  |  PubMed  |  

Nascimento, M.L., A.R. Souza, A.S. Chaves, A.S.M. Cesar and R.R. Tullio et al., 2016. Feed efficiency indexes and their relationships with carcass, non-carcass and meat quality traits in Nellore steers. Meat Sci., 116: 78-85.
PubMed  |  Direct Link  |  

Natalicchio, A., F.D. Stefano, S. Perrini, L. Laviola and A. Cignarelli et al., 2009. Involvement of the p66Shc protein in glucose transport regulation in skeletal muscle myoblasts. Am. J. Physiol. Endocrinol. Metab., 296: E228-E237.
CrossRef  |  PubMed  |  Direct Link  |  

Nedergaard, J. and B. Cannon, 2013. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta, 1831: 943-949.
CrossRef  |  PubMed  |  Direct Link  |  

Nemoto, S., C.A. Combs, S. French, B.H. Ahn and M.M. Fergusson et al., 2006. The mammalian longevity-associated gene product p66Shc regulates mitochondrial metabolism. J. Biol. Chem., 281: 10555-10560.
CrossRef  |  PubMed  |  Direct Link  |  

Ojano-Dirain, C., M. Toyomizu, T. Wing, M. Cooper and W.G. Bottje, 2007. Gene expression in breast muscle and duodenum from low and high feed efficient broilers. Poult. Sci., 86: 372-381.
Direct Link  |  

Orsini, F., M. Moroni, C. Contursi, M. Yano and P. Pelicci et al., 2006. Regulatory effects of the mitochondrial energetic status on mitochondrial p66Shc. Biol. Chem., 387: 1405-1410.
PubMed  |  Direct Link  |  

Perrini, S., F. Tortosa, A. Natalicchio, C. Pacelli and A. Cignarelli et al., 2015. The p66Shc protein controls redox signaling and oxidation-dependent DNA damage in human liver cells. Am. J. Physiol. Gastrointestinal Liver Physiol., 309: G826-G840.
PubMed  |  Direct Link  |  

Ramsey, J.J., D. Tran, M. Giorgio, S.M. Griffey and A. Koehne et al., 2013. The influence of Shc proteins on life span in mice. J. Gerontology Ser. A Biomed. Sci. Med. Sci., 69: 1177-1185.
CrossRef  |  PubMed  |  Direct Link  |  

Ranieri, S.C., S. Fusco, E. Panieri, V. Labate and M. Mele et al., 2010. Mammalian life-span determinant p66Shc A mediates obesity-induced insulin resistance. Proc. National Acad. Sci., 107: 13420-13425.
CrossRef  |  PubMed  |  Direct Link  |  

Ravichandran, K.S., 2001. Signaling via Shc family adapter proteins. Oncogene, 20: 6322-6330.
CrossRef  |  PubMed  |  Direct Link  |  

Sasaoka, T. and M. Kobayashi, 2000. The functional significance of Shc in insulin signaling as a substrate of the insulin receptor. Endocr. J., 47: 373-381.
CrossRef  |  PubMed  |  Direct Link  |  

Sherman, E.L., J.D. Nkrumah, B.M. Murdoch, C. Li, Z. Wang, A. Fu and S.S. Moore, 2008. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency and carcass merit in beef cattle. J. Anim. Sci., 86: 1-16.
CrossRef  |  Direct Link  |  

Stern, J.H., K. Kim and J.J. Ramsey, 2012. The influence of Shc proteins and aging on whole body energy expenditure and substrate utilization in mice. PloS One, 7: e48790-e48801.
CrossRef  |  PubMed  |  Direct Link  |  

Stern, J.H., K. Kim and J.J. Ramsey, 2012. The influence of acute, late-life calorie restriction on whole body energy metabolism in p66Shc(-/-) mice. Mech. Ageing Dev., 133: 414-420.
CrossRef  |  PubMed  |  Direct Link  |  

Tomilov, A., A. Bettaieb, K. Kim, S. Sahdeo and N. Tomilova et al., 2014. Shc depletion stimulates brown fat activity in vivo and in vitro. Aging Cell, 13: 1049-1058.
PubMed  |  Direct Link  |  

Tomilov, A., N. Tomilova, Y. Shan, K. Hagopian and A. Bettaieb et al., 2016. p46Shc inhibits thiolase and lipid oxidation in mitochondria. J. Biol. Chem., 291: 12575-12585.
CrossRef  |  PubMed  |  Direct Link  |  

Tomilov, A.A., J.J. Ramsey, K. Hagopian, M. Giorgio and K.M. Kim et al., 2011. The Shc locus regulates insulin signaling and adiposity in mammals. Aging Cell, 10: 55-65.
PubMed  |  Direct Link  |  

Trinei, M., I. Berniakovich, P.G. Pelicci and M. Giorgio, 2006. Mitochondrial DNA copy number is regulated by cellular proliferation: A role for Ras and p66shc. Biochim. Biophys. Acta Bioenerg., 1757: 624-630.
PubMed  |  Direct Link  |  

Wu, J., P. Cohen and B.M. Spiegelman, 2013. Adaptive thermogenesis in adipocytes: Is beige the new brown?. Genes Dev., 27: 234-250.
CrossRef  |  PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved