Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 16
Page No. 4016 - 4021

Large Effective Area Square Photonic Crystal Fiber for Optical Communications

Authors : Feroza Begum, Abul Kalam Azad, Saifullah Abu Bakar, Iskander Petra, Kazuya Miyagi and Yoshinori Namihira

References

Ademgil, H. and S. Haxha, 2012. Endlessly single mode photonic crystal fiber with improved effective mode area. Opt. Commun., 285: 1514-1518.
Direct Link  |  

Begum, F. and Y. Namihira, 2012. Photonic Crystal Fiber for Medical Applications. University of the Ryukyus, Nishihara, Japan,.

Begum, F., Y. Namihira, S.A. Razzak, S. Kaijage and N.H. Hai et al., 2009. Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion. Opt. Commun., 282: 1416-1421.
Direct Link  |  

Begum, F., Y. Namihira, S.M.A. Razzak, S. Kaijage and K. Miyagi et al., 2007. Highly nonlinear dispersion-flattened square photonic crystal fibers with low confinement losses. Opt. Rev., 14: 120-124.
CrossRef  |  Direct Link  |  

Begum, F., Y. Namihira, S.M.A. Razzak, S. Kaijage and N.H. Hai et al., 2009. Novel broadband dispersion compensating photonic crystal fibers: Applications in high speed transmission systems. Opt. Laser Technol., 41: 679-686.
CrossRef  |  

Birks, T.A., J.C. Knight and P.S.J. Russell, 1997. Endlessly single-mode photonic crystal fiber. Opt. Lett., 22: 961-963.
CrossRef  |  Direct Link  |  

Florous, N., K. Saitoh and M. Koshiba, 2006. The role of artificial defects for engineering large effective mode area, flat chromatic dispersion and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms. Opt. Express, 14: 901-913.
PubMed  |  Direct Link  |  

Knight, J.C., T.A. Birks, P.S.J. Russell and D.M. Atkin, 1996. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett., 21: 1547-1549.
Direct Link  |  

Matsui, T., J. Zhou, K. Nakajima and I. Sankawa, 2005. Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. J. Lightwave Technol., 23: 4178-4183.
CrossRef  |  Direct Link  |  

Reeves, W.H., J.C. Knight, P.S.J. Russell and P.J. Roberts, 2002. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express, 10: 609-613.
Direct Link  |  

Roberts, P.J., F. Couny, H. Sabert, B.J. Mangan and D.P. Williams et al., 2005. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express, 13: 236-244.
PubMed  |  Direct Link  |  

Rostami, A. and H. Soofi, 2011. Correspondence between effective mode area and dispersion variations in defected core photonic crystal fibers. J. Lightwave Technol., 29: 234-241.
CrossRef  |  Direct Link  |  

Saval, L.S.G., T.A. Birks, N.Y. Joly, A.K. George and W.J. Wadsworth et al., 2005. Splice-free interfacing of photonic crystal fibers. Opt. Lett., 30: 1629-1631.
PubMed  |  Direct Link  |  

Shen, L.P., W.P. Huang and S.S. Jian, 2003. Design of photonic crystal fibers for dispersion-related applications. J. Lightwave Technol., 21: 1644-1651.
Direct Link  |  

Soriano, A.D., O.A. Mora and A. Dengra, 2015. A new low-dispersion and large-effective-area PCF based on a fractal design. Opt. Fiber Technol., 21: 69-72.
Direct Link  |  

Tsuchida, Y., K. Saitoh and M. Koshiba, 2005. Design and characterization of single-mode holey fibers with low bending losses. Opt. Express, 13: 4770-4779.
PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved