Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 12 SI
Page No. 9440 - 9443

Insight into Cellopentaose Binding Mode in Glycone and Aglycone Binding Site of Beta-Glucosidase B: A Molecular Dynamics Approach

Authors : Nurulbahiyah Ahmad Khairudin, Kamyar Shameli, Mikio Miyake and Nur Shima Fadhilah Mazlan

References

Badieyan, S., D.R. Bevan and C. Zhang, 2012. Probing the active site chemistry of β-glucosidases along the hydrolysis reaction pathway. Biochem., 51: 8907-8918.
CrossRef  |  PubMed  |  Direct Link  |  

Barrett, T., C.G. Suresh, S.P. Tolley, E.J. Dodson and M.A. Hughes, 1995. The crystal structure of a Cyanogenic β-glucosidase from white clover a family 1 Glycosyl hydrolase. Struct., 3: 951-960.
Direct Link  |  

Chuenchor, W., S. Pengthaisong, R.C. Robinson, J. Yuvaniyama and W. Oonanant et al., 2008. Structural insights into rice BGlu1 β-glucosidase oligosaccharide hydrolysis and transglycosylation. J. Mol. Boil., 377: 1200-1215.
PubMed  |  Direct Link  |  

Czjzek, M., M. Cicek, V. Zamboni, W.P. Burmeister and D.R. Bevan et al., 2001. Crystal structure of a monocotyledon (maize ZMGlu1) β-glucosidase and a model of its complex with p-Nitrophenyl β-D-thioglucoside. Biochem. J., 354: 37-37.
CrossRef  |  PubMed  |  Direct Link  |  

Henrissat, B. and A. Bairoch, 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J., 316: 695-696.
Direct Link  |  

Hrmova, M., E.A. MacGregor, P. Biely, R.J. Stewart and G.B. Fincher, 1998. Substrate binding and catalytic mechanism of a barley β-D-glucosidase/(1, 4)-β-D-glucan exohydrolase. J. Biol. Chem., 273: 11134-11143.
CrossRef  |  Direct Link  |  

Isorna, P., J. Polaina, L. Latorre-Garcia, F.J. Canada and B. Gonzaleza et al., 2007. Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I Glycosidases. J. Mol. Boil., 371: 1204-1218.
PubMed  |  Direct Link  |  

Khairudin, N.A. and N. Mazlan, 2015. Binding mode study of cellopentaose in β-glucosidase B via do cking simulation. J. Eng. Sci. Technol., 10: 86-95.
Direct Link  |  

Lins, R.D. and P.H. Hunenberger, 2005. A new GROMOS force field for hexopyranose based carbohydrates. J. Comput. Chem., 26: 1400-1412.
CrossRef  |  Direct Link  |  

Marana, S.R., 2006. Molecular basis of substrate specificity in family 1 glycoside hydrolases. IUBMB. Life, 58: 63-73.
CrossRef  |  PubMed  |  Direct Link  |  

Marana, S.R., M. Jacobs-Lorena, W.R. Terra and C. Ferreira, 2001. Amino acid residues involved in substrate binding and catalysis in an insect digestive β-glycosidase. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1545: 41-52.
PubMed  |  Direct Link  |  

Mazlan, N.S.F. and N.B.A. Khairudin, 2014. Docking study of β-glucosidase B (BGLB) from Paenibacillus polymyxa with Cellobiose and Cellotetrose. J. Med. Bioeng., 3: 78-83.
CrossRef  |  Direct Link  |  

Nijikken, Y., T. Tsukada, K. Igarashi, M. Samejima and T. Wakagi et al., 2007. Crystal structure of intracellular family 1 β-glucosidase BGL1A from the basidiomycete Phanerochaete Chrysosporium. FEBS. Lett., 581: 1514-1520.
CrossRef  |  PubMed  |  Direct Link  |  

Pettersen, E.F., T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, 2004. UCSF chimera–A visualization system for exploratory research and analysis. J. Comput. Chem., 25: 1605-1612.
CrossRef  |  PubMed  |  Direct Link  |  

Schubert, M., D.K. Poon, J. Wicki, C.A. Tarling and E.M. Kwan et al., 2007. Probing electrostatic interactions along the reaction pathway of a glycoside hydrolase: Histidine characterization by NMR spectroscopy. Biochem., 46: 7383-7395.
CrossRef  |  Direct Link  |  

Schuttelkopf, A.W. and D.M. van Aalten, 2004. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 60: 1355-1363.
PubMed  |  Direct Link  |  

Seshadri, S., T. Akiyama, R. Opassiri, B. Kuaprasert and J.K. Cairns, 2009. Structural and enzymatic characterization of Os3BGlu6 a rice β-glucosidase hydrolyzing hydrophobic glycosides and (1→3) and (1→2) linked disaccharides. Plant Physiol., 151: 47-58.
PubMed  |  Direct Link  |  

Sue, M., K. Yamazaki, J.I. Kouyama, Y. Sasaki and K. Ohsawa et al., 2005. Purification, crystallization and preliminary X-ray analysis of a hexameric β-glucosidase from wheat. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 61: 864-866.
PubMed  |  Direct Link  |  

Verdoucq, L., J. Moriniere, D.R. Bevan, A. Esen, A. Vasella and B. Henrissat et al., 2004. Structural determinants of substrate specificity in family 1 β-glucosidases novel insights from the crystal structure of sorghum dhurrinase-1, a plant β-glucosidase with strict specificity in complex with its natural substrate. J. Biol. Chem., 279: 31796-31803.
PubMed  |  Direct Link  |  

Verdoucq, L., M. Czjzek, J. Moriniere, D.R. Bevan and A. Esen, 2003. Mutational and structural analysis of aglycone specificity in maize and sorghum β-glucosidases. J. Biol. Chem., 278: 25055-25062.
CrossRef  |  PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved