Journal of Engineering and Applied Sciences

Year: 2017
Volume: 12
Issue: 4
Page No. 945 - 949

Effect of High Speed End Milling of Co-28Cr-6Mo Cobalt Chromium Molybdenum Alloy using Uncoated and Coated Carbide Tools

Authors : Hainol Akbar Zaman, Safian Sharif, Mohd Hasbullah Idris and Denni Kurniawan

References

Bagci, E. and S. Aykut, 2006. A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (Stellite 6). Intl. J. Adv. Manuf. Technol., 29: 940-947.
CrossRef  |  Direct Link  |  

Bordin, A., A. Ghiotti, S. Bruschi, L. Facchini and F. Bucciotti, 2014. Machinability characteristics of wrought and EBM CoCrMo alloys. Procedia CIRP., 14: 89-94.
Direct Link  |  

Bordin, A., S. Bruschi and A. Ghiotti, 2014. The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy. Procedia CIRP., 13: 219-224.
Direct Link  |  

Brazel, E., R. Hanley and G.E. O'Donell, 2011. The effects of process parameters on spindle power consumption in abrasive machining of CoCr alloy. J. Mach. Eng., 11: 59-69.
Direct Link  |  

Bruschi, S., A. Ghiotti and A. Bordin, 2013. Effect of the process parameters on the machinability characteristics of a CoCrMo alloy. Key Eng. Mater., 554: 1976-1983.
Direct Link  |  

Cui, Q., X. Dong, Y. Ma and T. Liu, 2014. Application of high speed machining technology in modern die manufacture. Mater. Sci. Forum, 801: 139-143.
Direct Link  |  

Ferreira, P., F. Simoes and C. Relvas, 2014. Experimental analysis of milling operations in Ti-6Al-4V and Co-28Cr-6Mo alloys for medical devices. Key Eng. Mater., 611: 1282-1293.
Direct Link  |  

Karpuschewski, B., H.J. Pieper and J. Doring, 2014. Impact of the cooling system on the cutting of medical cobalt chromium with ceramic cutting inserts. Prod. Eng., 8: 613-618.
CrossRef  |  Direct Link  |  

Khaimovich, A.I., A.V. Balaykin and A.I. Kondratiev, 2014. Methodology of rheological material properties phenoinenological modeling at high speed cutting by reverse analysis. Res. J. Appl. Sci., 9: 753-760.
Direct Link  |  

Milosev, I., 2012. CoCrMo Alloy for Biomedical Applications. In: Biomedical Applications, Djokic, S.S. (Ed.). Springer, New York, USA., ISBN:978-1-4614-3124-4, pp: 1-72.

Niinomi, M., 2002. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A., 33: 477-486.
CrossRef  |  Direct Link  |  

Patel, B., F. Inam, M. Reece, M. Edirisinghe and W. Bonfield et al., 2010. A novel route for processing cobalt-chromium-molybdenum orthopaedic alloys. J. R. Soc. Interface, 7: 1641-1645.
CrossRef  |  PubMed  |  Direct Link  |  

Safari, H., S. Sharif, S. Izman, H. Jafari and D. Kurniawan, 2014. Cutting force and surface roughness characterization in cryogenic high-speed end milling of Ti-6Al-4V ELI. Mater. Manuf. Processes, 29: 350-356.
Direct Link  |  

Shao, H., L. Li, L.J. Liu and S.Z. Zhang, 2013. Study on machinability of a stellite alloy with uncoated and coated carbide tools in turning. J. Manuf. Processes, 15: 673-681.
Direct Link  |  

Shokrani, A., V. Dhokia and S.T. Newman, 2012. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Intl. J. Mach. Tools Manuf., 57: 83-101.
Direct Link  |  

Song, Y., C.H. Park and T. Moriwaki, 2010. Mirror finishing of Co-Cr-Mo alloy using elliptical vibration cutting. Precis. Eng., 34: 784-789.
Direct Link  |  

Tonshoff, H.K., P. Andrae and C. Lapp, 1999. High-efficient machining of aerospace-alloys. Proceedings of the International Conference on Aerospace Manufacturing Technology Conference and Exposition, June 5, 1999, SAE International, Hannover, Germany, pp: 1-10.

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved