Research Journal of Applied Sciences

Year: 2014
Volume: 9
Issue: 2
Page No. 86 - 91

Modeling of an Energy Harvesting Piezoelectric Cantilever Beam

Authors : M.S. Bhuyan, Sawal H. Md. Ali, M. Othman, B.Y. Majlis, Shafii A. Wahab and Shabiul Islam

References

Ajitsaria, J., S.Y. Choe, D. Shen and D.J. Kim, 2007. Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater. Struct., Vol. 16 10.1088/0964-1726/16/2/024

Crawley, E.F. and E.H. Anderson, 1990. Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct., 1: 4-25.
CrossRef  |  Direct Link  |  

Eggborn, T., 2003. Analytical Models to Predict Power Harvesting with Piezoelectric Materials. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Pages: 94.

Gao, X., W.H. Shih and W.Y. Shih, 2013. Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE Trans. Ind. Electron., 60: 1116-1118.
CrossRef  |  Direct Link  |  

Goldfarb, M. and L.D. Jones, 1999. On the efficiency of electric power generation with piezoelectric ceramic. J. Dynamic Syst. Meas. Control, 121: 566-571.
CrossRef  |  Direct Link  |  

Hagood, N.W., W.H. Chung and A. Von Flotow, 1990. Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct., 1: 327-354.
CrossRef  |  Direct Link  |  

Kasyap, A., J. Lim, D. Johnson, S. Horowitz and T. Nishida et al., 2002. Energy reclamation from a vibrating piezoceramic composite beam. Proceedings of the 9th International Congress on Sound and Vibration, Volume 9, July 8-11, 2002, Orlando, FL., USA., pp: 36-43.

Kim, S.B., H. Park, S.H. Kim, H.C. Wikle, J.H. Park and D.J. Kim, 2013. Comparison of MEMS PZT cantilevers based on d31 and d33 modes for vibration energy harvesting. J. Microelectromech. Syst., 22: 26-33.
CrossRef  |  Direct Link  |  

Li, X., M. Guo and S. Dong, 2011. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting. IEEE Trans. Ultrasonics Ferroelectrics Frequency Control, 58: 698-703.
CrossRef  |  

Orfei, F., I. Neri, H. Vocca and L. Gammaitoni, 2013. Nonlinear vibration energy harvesting at work: An application for the automotive sector. Proceedings of the IEEE International Symposium on Circuits and Systems, May 19-23, 2013, Beijing, China, pp: 2735-2738.

Prashanthi, K., M. Naresh, V. Seena, T Thundat and V.R. Rao, 2012. A novel photoplastic piezoelectric nanocomposite for MEMS applications. J. Microelectromech. Syst., 21: 259-261.
CrossRef  |  

Romani, A., R.P. Paganelli, E. Sangiorgi and M. Tartagni, 2013. Joint modeling of piezoelectric transducers and power conversion circuits for energy harvesting applications. IEEE Sensors J., 13: 916-925.
CrossRef  |  

Roundy, S., P.K. Wright and J. Rabaey, 2003. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun., 26: 1131-1144.
CrossRef  |  

Sidek, O. and S. Saadon, 2013. Vibration-based MEMS piezoelectric energy harvester for power optimization. Proceedings of the UKSim 15th International Conference on Computer Modelling and Simulation, April 10-12, 2013, Cambridge, UK., pp: 241-246.

Smits, J.G. and S.I. Dalke, 1989. The constituent equations of piezoelectric bimorphs. Proceedings of the IEEE Ultrasonics Symposium, Volume 2, October 3-6, 1989, Montreal, Canada, pp: 781-784.

Sodano, H.A., G. Park and D.J. Inman, 2004. Estimation of electric charge output for piezoelectric energy harvesting. Strain, 40: 49-58.
CrossRef  |  

Umeda, M., K. Nakamura and S. Ueha, 1996. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Jap. J. Applied Phys., 35: 3267-3273.
CrossRef  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved