Research Journal of Biological Sciences

Year: 2011
Volume: 6
Issue: 11
Page No. 615 - 626

Bacillus thuringiensis: An Environment Friendly Microbial Control Agent

Authors : Nishat Sarker and Khandaker Rayhan Mahbub

References

Ackermann, H.W., R.R. Azizbekyan, R.L. Bernier, H. de Barjac, S. Saindoux, J.R. Valero and M.X. Yu, 1995. Phage typing of Bacillus subtilis and B. thuringiensis. Res. Microbiol., 146: 643-657.
CrossRef  |  PubMed  |  

Anonymous, 2000. Beauveria bassiana strain GHA (128924) technical document. U.S. Environment Protection Agency. http://www.epa.gov/pesticides/biopesticides/factsheets/fs128924t.htm.

Aronson, A.I., C. Geng and L. Wu, 1999. Aggregation of Bacillus thuringiensis Cry1A toxins upon binding to target insect larval midgut vesicles. Applied Environ. Microbiol., 65: 2503-2507.
PubMed  |  Direct Link  |  

Bah, A., K. van Frankenhuyzen, R. Brousseau and L. Masson, 2004. The Bacillus thuringiensis cry1Aa toxin: Effects of trypsin and chymotrypsin site mutations on toxicity and stability. J. Invertebr. Pathol., 85: 120-127.
CrossRef  |  

Barton, K., H. Whitley and N.S. Yang, 1987. Bacillus thuringiensi §-endotoxins in transgenic Nicotina tabaccum provides resistance to Lepidopteran pests. Plant Physiol., 85: 1103-1109.
Direct Link  |  

Bulla jr., L.A., R.M. Faust, R. Andrews and N. Goodman, 1985. Insecticidal Bacilli. In: The Moleculer Biology of the Bacilli, Dubnau, D.A. (Ed.). Vol. 2. Academic Press Inc., New York, USA., pp: 185-209.

Butko, P., 2003. Cytolytic toxin Cyt1A and its mechanism of membrane damage: Data and hypotheses. Applied Environ. Microbiol., 69: 2415-2423.
CrossRef  |  PubMed  |  

Carroll, J. and D.J. Ellar, 1993. An analysis of Bacillus thuringiensis δ-endotoxin action on insect-midgut-membrane permeability using a lights cattering assay. Eur. J. Biochem., 214: 771-778.
PubMed  |  

Cohen, M.B., M. Chen, J.S. Bentur, K.L. Heong and G.Y. Ye, 2008. Bt Rice in Asia: Potential Benefits, Impacts and Sustainability. In: Integration of Insect-Resistant Genetically Modified Crops with IPM Systems, Romeis, J., A.M. Shelton and G.G. Kennedy (Eds.). Springer, Berlin, Germany, pp: 223-248.

Crickmore, N., D.R. Zeigler, J. Feitelson, E. Schnepf and J. Van Rie et al., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., 62: 807-813.
Direct Link  |  

Davidson, E.W., 1992. Development of insect resistance to biopesticides. Pesqui. Agropecu. Bras., 27: 47-57.

De Barjac, H. and E. Franchon, 1990. Classification of B.t. strains. Entomophaga, 35: 233-240.

De Maagd, R.A., A. Bravo and N. Crickmore, 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Tren. Genet., 17: 193-199.
PubMed  |  

De Maagd, R.A., A. Bravo, C. Berry, N. Crickmore and H.E. Schnepf, 2003. Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Ann. Rev. Genet., 37: 409-433.
CrossRef  |  

Delannay, X., B.J. LaVallee, R.K. Proksch, R.L. Fuchs and S.R. Sims et al., 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Nat. Biotechnol., 7: 1265-1269.
Direct Link  |  

Du, C., P.A.W. Martin and K.W. Nickerson, 1994. Comparison of disulfide contents and solubility at alkaline pH of insecticidal and non-insecticidal Bacillus thuringiensis protein crystals. Applied Environ. Microbiol., 60: 3847-3853.

EPA, 1998. Pesticide fact sheet: Bacillus thuringiensis subsp tolworthi Cry9 protein and the genetic material necessary for its production in corn. U.S. Environmental Protection Agency.

El-Bendary, M.A., 1999. Growth physiology and production of mosquitocidal toxins from Bacillus sphaericus. Ph.D. Thesis, Faculty of Science, Ain-Shams University, Egypt.

El-Bendary, M.A., 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J. Basic Microbiol., 46: 158-170.
PubMed  |  Direct Link  |  

Federici, B.A., 1999. Bacillus thuringiensis. In: Handbook of Biological Control, Bellows, T.S. and T.W. Fisher (Eds.). Academic Press, San Diego, USA., pp: 575-593.

Fernandez-Ruvalcaba, M., M. Pena-Chora, A. Romo-Martinez, V. Hernandez-Velazquez, A.B. de la Parra and D.P. la Rosa, 2010. Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chemical pesticides. J. Insect. Sci., Vol. 10. 10.1673/031.010.14146

Ferre, J., M.D. Real, J. van Rie, S. Jansens and M. Peferoen, 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA., 88: 5119-5123.
Direct Link  |  

Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez, 1999. Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: Proteolytic and SEM study of the larval midgut. Arch. Insect Biochem. Physiol., 42: 51-63.
CrossRef  |  PubMed  |  

Georghiou, G.P., J. Barker, Z. Al-Khatib, R. Mellon and C. Murray et al., 1983. Insecticide resistance in mosquitoes: Research on new chemical and techniques for management. Mosquito Control Research Annual Report. University of California, Riverside, pp: 86-91.

Gill, S.S., E.A. Cowles and F.V. Pictrantonio, 1992. The mode of action of Bacillus thuringiensis endotoxins. Ann. Rev. Entomol., 37: 615-634.
Direct Link  |  

Goldman, I.F., J. Arnold and B.C. Carlton, 1986. Selection for resistance to Bacillus thuringiensis subsp. israelensis in field and laboratory populations of the mosquito Aedes aegypti. J. Inverteb. Pathol., 47: 317-324.

Gonzales, Jr. J.M., B.J. Brown, and B.C. Carlton, 1982. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin among the strains of Bacillus thuringiensis and Bacillus cereus. Proc. Natl. Acad. Sci. USA., 79: 6951-6955.

Gonzalez-Cabrera, J., B. Escriche, B.E. Tabashnik and J. Ferre, 2003. Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm (Pectinophora gossypiella). Insect Biochem. Mol. Biol., 33: 929-935.

Gordon, R.E., W.C. Haynes and C.H.N. Pang, 1973. The Genus Bacillus, Agriculture Handbook. U.S. Department of Agriculture, Washington, DC., USA.

Gould, F., A.M. Ramirez, A. Anderson, J. Ferre, F.J. Silva and W.J. Moar, 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA., 80: 7986-7990.
Direct Link  |  

Grafius, E.J. and D.S. Douches, 2008. The Present And Future Role of Insect-Resistant Genetically Modified Potato Cultivars in IPM. In: Integration of Insect-Resistant Genetically Modified Crops with IPM Systems, Romeis, J., A.M. Shelton and G.G. Kennedy (Eds.). Springer-Verlag, Berlin, Germany, pp: 195-221.

Griffiths, J.S., J.L. Whitacre, D.E. Stevens and R.V. Aroian, 2001. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science, 293: 860-864.
CrossRef  |  Direct Link  |  

Guerchicoff, A., A. Delecluse and C.P. Rubinstein, 2001. The bacillus thuringiensis cyt genes for the hemolytic endotoxins constitude a gene family. Applied Environ. Microbiol., 67: 1090-1096.
CrossRef  |  Direct Link  |  

Hoffmann, M.P., F.G. Zalom, L.T. Wilson, J.M. Smilanick and L.D. Malyj et al., 1992. Field evaluation of transgenic tobacco containing genes encoding Bacillus thuringiensis delta-endotoxin or cowpea trypsin inhibitor: Efficacy against Helicoverpa zea (Lepidoptera: Noctuidae). J. Econ. Entomol., 85: 2516-2522.
Direct Link  |  

Hofman, C., H. Vanderbruggen, H. Hofte, J. van Rie, S. Jansen and H. van Melleart, 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlateted with the presence of high affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA., 85: 7844-7848.
Direct Link  |  

Hofman, C., P. Luthy, R. Hutter and V. Pliska, 1988. Binding of the of the delta endotoxin from Bacillus thuringiensis to brush border membrane vesicles of cabbage butterfly (Pieris brassicae ). Eur. J. Biochem., 173: 85-91.
Direct Link  |  

Hofte, H. and H.R. Whiteley, 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev., 53: 242-255.
Direct Link  |  

Huang, F., K.Y. Zhu, L.L. Buschman, R.A. Higgins and B. Oppert, 1999. Comparison of midgut proteinases in Bacillus thuringiensis-susceptible and resistant european corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol., 65: 132-139.
Direct Link  |  

Huang, F., R.A. Higgins, and L.L. Buschman, 1999. Heritability and stability of resistance to Bacillus thuringiensis in Ostrinia nubilalis (Lepidoptera: Crambidae). Bull. Entomol. Res., 89: 449-454.

Icgen, Y., B. Icgen and G. Ozcengiz, 2002. Regulation of crystal protein biosynthesis by Bacillus thuringiensis: II. Effects of carbon and nitrogen sources. Res. Microbiol., 153: 605-609.
PubMed  |  Direct Link  |  

Ishiwata, S., 1901. On a new type of severe flacherie (sotto disease). Dainihon Sansi Kaiho, 114: 1-5.

James, C., 2003. Global review of commercialized transgenic crops: 2002 feature: Bt Maize. ISAAA, Briefs No. 29. ISAAA, Ithaca, NY.

James, C., 2004. Global status of commercialised transgenic crops: 2004. International Service for the Acquisition of Agri-biotech Applications (ISAAA) Brief No. 32, ISAAA, Ithaca, NY.

James, C., 2007. Global status of commercialized biotech/GM crops: 2007. ISAAA Briefs No. 37. The International Service for the Acquisition of Agri-biotech Applications, Ithaca, NY., USA. Pages: 16. http://www.isaaa.org/resources/publications/briefs/37/default.html.

James, C., 2009. Global status of commercialized biotech/GM crops. ISAAA Briefs 41 (ISAAA, Ithaca, New York, USA, 2009), http://www.isaaa.org/resources/publications/briefs/41/.

James, C., 2009. Global status of commercialized biotech/GM crops: 2009. ISAAA Brief No. 41. ISAAA: Ithaca, NY. http://www.isaaa.org/resources/publications/briefs/41/.

James, C., 2010. Global status of commercialized biotech/GM crops: 2010. ISAAA Brief No. 42. ISAAA: Ithaca, NY. http://www.isaaa.org/resources/publications/briefs/42/.

Janmaat, A.F. and J. Myers, 2003. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loppers, Trichoplusia ni. Proc. R. Soc. Biol. Sci., 270: 2263-2270.
CrossRef  |  

Johnston, K.A., M.J. Lee, C. Brough, V.A. Hilder, A.M.R. Gatehouse and J. A. Gatehouse, 1995. Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin and chymotrypsin-like enzymes. Insect Biochem. Mol. Biol., 25: 375-383.
Direct Link  |  

Jurat-Fuentes, J.L. and M.J. Adang, 2004. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescensM larvae. Eur. J. Biochem., 271: 3127-3135.
PubMed  |  Direct Link  |  

Jurat-Fuentes, J.L., F.L. Gould and M.J. Adang, 2003. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Applied Environ. Microbiol., 69: 5898-5906.
Direct Link  |  

Kirsch, K. and H. Schmutterer, 1988. Low efficacy of a Bacillus thuringiensis (Berl.) formulation in controlling the diamondback moth, Plutella xylostella L. in the Philippines. J. Applied Entomol., 105: 249-255.

Kumar, P.A. and R.P. Sharma, 1994. Genetic engineering of crop plants with Bacillus thuringiensis insecticidal crystal protein genes. J. Plant Biochem. Biotechnol., 3: 3-9.

Kumar, S., 2002. GM Vs green revolution: Bt cotton raises new questions. Civil Services Chronicle, 12: 28-30.

Lee, M.K., P. Miles and J.S. Chen, 2006. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Helitohis virescens and Helicoverpa zea midgets. Biochem. Biophys. Res. Commun., 339: 1043-1047.

Lereclus, D., J. Ribier, A. Klier, G. Menou and M.M. Lecadet, 1984. A transposon-like structure related to the delta-endotoxin gene of Bacillus thuringiensis. EMBO J., 3: 2561-2567.
PubMed  |  

Lu, Y.J. and M.J. Adang, 1996. Conversion of Bacillus thuringiensis CryIAc-binding aminopeptidase to a soluble form by endogenous phosphatidylinositol phopholipase C. Insect Biochem. Mol. Biol., 26: 33-40.
Direct Link  |  

Lynch, M.J. and P. Baumann, 1985. Immunological comparisons of the crystal protein from strains of Bacillus thuringiensis. J. Invertebrate Pathol., 46: 47-57.
Direct Link  |  

Marshall, A., 2010. 2nd-generation GM traits progress. Nat. Biotechnol., 28: 306-306.
PubMed  |  

McGaughey, W.H., 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 229: 193-195.
CrossRef  |  PubMed  |  Direct Link  |  

Miller, D.L., U. Rahardja and M.E. Whalon, 1990. Development of a strain of Colorado potato beetle resistance to different strains and mixtures of Bacillus thuringiensis. Pest Resistance Manage., 2: 25-25.

Moar, W.J., M. Pusztai-Carey, H. van Faassen, D. Bosch and R. Frutos et al., 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Applied Environ. Microbiol., 61: 2086-2092.
Direct Link  |  

Naranjo, S.E., 2011. Impact of Bt transgenic cotton on integrated pest management. J. Agric. Food Chem., 59: 5842-5851.
PubMed  |  

Naranjo, S.E., J.R. Ruberson, H.C. Sharma, L. Wilson and K.M. Wu, 2008. The Present and Future Role of Insect-Resistant Genetically Modified Cotton in IPM. In: Integration of Insect-Resistant Genetically Modified Crops With IPM Programs, Romeis, J., A.M. Shelton and G.G. Kennedy (Eds.). Springer, Berlin, Germany, pp: 159-194.

Nester, E.W., L.S. Thomashow, M. Metz and M. Gordon, 2002. 100 years of Bacillus thuringiensis: A critical scientific assessment. American Academy of Microbiology, Washington, D.C., pp: 17.

Norris, J.R., 1971. The Protein Crystal Toxin of Bacillus thuringiensis: Biosynthesis and Physical Structure. In: Microbial Control of Insects and Mites, Burges, H.D. and N.W. Mussey (Eds.). Academic Press Inc., New York and London, pp: 229-246.

Ozkan, M., F.B. Dilek, U. Yetis and G. Ozcengiz, 2003. Nutritional and cultural parameters influencing antidipteran delta-endotoxin production. Res. Microbiol., 154: 49-53.
PubMed  |  

Porcar, M. and V. Juarez-Perez, 2003. PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol. Rev., 26: 419-432.
Direct Link  |  

Prefontaine, G., P. Fast, P.C.K. Lau, M.A. Hefford, Z. Hanma and R. Brousseau, 1987. Use of oligo nucleotide probes to study the relatedness of delta-endotoxin genes among Bacillus thuringiensis subspecies and strains. Applied Environ. Microbiol., 53: 2808-2814.
Direct Link  |  

Ranjekar, P.K., A. Patankar, V. Gupta, R. Bhatnagar, J. Bentur and P.A. Kumar, 2003. Genetic engineering of crop plants for insect resistance. Curr. Sci., 84: 321-329.

Rodriguez-Almazan, C., L.E. Zavala, C. Munoz-Garay, N. Jimenez-Juarez and S. Pacheco et al., 2009. Dominant negative mutants of Bacillus thuringiensis Cry1Ab toxin function as anti-toxins: Demonstration of the role of oligomerization in toxicity. PLoS ONE, Vol. 4, No. 5. 10.1371/journal.pone.0005545

Roh, J.Y., J.Y. Choi, M.S. Li, B.R. Jin and Y.H. Je, 2007. Bacillus thuringiensis as a specific, safe and effective tool for insect pest control. J. Microbiol. Biotechnol., 17: 547-559.
PubMed  |  

Rowe, G.E. and A. Margaritis, 1987. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis. CRC Crit. Rev. Biotechnol., 6: 87-107.
Direct Link  |  

Rowe, G.E., 1990. Central metabolism of Bacillus thuringiensis during growth and sporulation. Ph.D. Thesis, University Western Ontario, London, Ontario, Canada.

Sanahuja, G., R. Banakar, R.M. Twyman, T. Capell and P. Christou, 2011. Bacillus thuringiensis: A century of research, development and commercial applications. Plant Biotechnol. J., 9: 283-300.
CrossRef  |  

Schnepf, E., N. Crickmore, J. van Rie, D. Lereclus and J. Baum et al., 1998. Bacillus thuringiensis and its pesticidal proteins. Microbiol. Mol. Biol. Rev., 62: 775-806.
Direct Link  |  

Sharma, H.C., K.K. Sharma and J.H. Crouch, 2004. Genetic transformation of crops for insect resistance: Potential and limitations. Crit. Rev. Plant Sci., 23: 47-72.
Direct Link  |  

Shelton, A.M., M. Fuchs and F.A. Shotkoski, 2008. Transgenic Vegetables and Fruits for Control of Insects and Insect-Vectored Pathogens. In: Integration of Insect-Resistant Genetically Modified Crops with IPM Systems, Romeis, J., A.M. Shelton and G.G. Kennedy (Eds.). Springer, Berlin, Germany, pp: 249-272.

Shotkoshi, F.A., V. Mascarenhas, R. Boykin and I.S. Chen, 2003. Vip: A novel insecticidal protein with broad spectrum lepidopteran activity. Proc. Belwide Cotton Conf., 6: 89-93.
Direct Link  |  

Siqueira, H.A.A., D. Moellenbeck, T. Spencer and B.D. Siegfried, 2004. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis δ-endotoxins. J. Econ. Entomol., 97: 1049-1057.
Direct Link  |  

Siqueira, H.A.A., J. Gonzalez-Cabrera, J. Ferre, R. Flannagan and B.D. Siegfried, 2006. Analysis of Cry1Ab binding in resistant and susceptible strains of the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Applied Environ. Microbiol., 72: 5318-5324.
CrossRef  |  

Soberon, M., S.S. Gill and A. Bravo, 2009. Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cell. Mol. Life Sci., 66: 1337-1349.
CrossRef  |  

Tabashnik, B.E., 1994. Evolution of resistance to Bacillus thuringiensis. Ann. Rev. Entomol., 39: 47-79.
CrossRef  |  Direct Link  |  

Tabashnik, B.E., N.L. Cushing, N. Finson and M.W. Johnson, 1990. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 83: 1671-1676.
CrossRef  |  Direct Link  |  

Tabashnik, B.E., Y. Carriere, T.J. Dennehy, S. Morin and M.S. Sisterson et al., 2003. Insect resistance to transgenic Bt crops: Lessons from the laboratory and field. J. Econ. Entomol., 96: 1031-1038.
Direct Link  |  

Tabashnik, B.E., Y.B. Liu, D.C. Unnithan, Y. Carriere, T.J. Dennehy and S. Morin, 2004. Shared genetic basis of resistance to Bt toxin Cry1Ac in independent strains of pink bollworm. J. Econ. Entomol., 97: 721-726.
Direct Link  |  

USEPA, 2001. Biopesticides registration action document. Bacillus thuringiensis (Bt) plant-incorporated protectants. http://www.epa.gov/pesticides/biopesticides/pips/bt_brad2/1-overview.pdf.

USEPA, 2007. Maize and Fall Armyworm in Puerto Rico. USEPA, Washington, DC., USA.

Vaeck, M., A. Reynearts, H. Hofte, S. Jansens and M. DeBeuckleer et al., 1987. Transgenic plants protected from insect attack. Nature, 328: 33-37.
CrossRef  |  Direct Link  |  

Van Rensburg, J.B.J., 2007. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-resistance maize. S. Afr. J. Plant Soil, 24: 147-151.

Van Rie, J., W.H. McGaughey, D.E. Johnson, M.D. Barnett and H. Van Mellaert, 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science, 247: 72-74.
CrossRef  |  

Visser, B., E. Munsterman, A. Stoker and W.G. Dirkse, 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol., 172: 6783-6788.
Direct Link  |  

WHO, 1999. Microbial pest control agent Bacillus thuringiensis. Report of UNEP/ILO/WHO (ECH, 217), WHO, Geneva. http://www.scribd.com/doc/33350982/Microbial-Pest-Control-Agent-Bacillus-Thuringiensis.

Wilson, F.D., H.M. Flint, W.R. Deaton, D.A. Fischhoff and F.J. Perlak et al., 1992. Resistance of cotton lines containing a Bacillus thuringiensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J. Eco. Entomol., 85: 1516-1521.
Direct Link  |  

Xu, X., L. Yu and Y. Wu, 2005. Disruption of a cadherin gene associated with resistance to Cry1Ac d-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied Environ. Microbiol., 71: 948-954.
CrossRef  |  Direct Link  |  

Yang, X.M. and S.S. Wang, 1998. Development of Bacillus thuringiensis fermentation and process control from a practical perspective. Biotechnol. Applied Biochem., 28: 95-98.
Direct Link  |  

Zhang, X., M. Candas, N.B. Griko, R. Taissing and L.A. Jr. Bulla, 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA., 103: 9897-9902.
Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved