Journal of Engineering and Applied Sciences

Year: 2018
Volume: 13
Issue: 23
Page No. 9935 - 9945

Identification of Microbial Community of WAS in Trickling Packed Bed Reactor Produced Biohydrogen and Studying the Effect of Hydrolysis by TiO2 Photocatalysis

Authors : Ali K. Al-Banaa, Mohammad A. Atiya and Nadhem H. Hayder

References

Ahn, Y., E.J. Park, Y.K. Oh, S. Park and G. Webster et al., 2005. Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production. FEMS. Microbiol. Lett., 249: 31-38.
CrossRef  |  PubMed  |  Direct Link  |  

Alemahdi, N., H.C. Man, N.A. Rahman, N. Nasirian and Y. Yang, 2015. Enhanced mesophilic bio-hydrogen production of raw rice straw and activated sewage sludge by co-digestion. Intl. J. Hydrogen Energy, 40: 16033-16044.
CrossRef  |  Direct Link  |  

Arlos, M.J., M.M. Hatat-Fraile, R. Liang, L.M. Bragg and N.Y. Zhou et al., 2016. Photocatalytic decomposition of organic micropollutants using immobilized TiO2 having different isoelectric points. Water Res. J., 101: 351-361.
CrossRef  |  PubMed  |  Direct Link  |  

Barca, C., A. Soric, D. Ranava, M.T. Giudici-Orticoni and J.H. Ferrasse, 2015. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review. Bioresour. Technol., 185: 386-398.
CrossRef  |  PubMed  |  Direct Link  |  

Barca, C., D. Ranava, M. Bauzan, J.H. Ferrasse and M.T. Giudici-Orticoni et al., 2016. Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris. Bioresour. Technol., 221: 526-533.
CrossRef  |  PubMed  |  Direct Link  |  

Bernardo, R., T. Tonia and S. Sara, 2015. Bio-H2 & Bio-CH4 through Anaerobic Digestion, Part of the Green Energy and Technology Book Series. Springer, London, England, UK., ISBN:978-1-4471-6431-9, Pages: 218.

Bielen, A.A.M., M.R.A. Verhaart, J. Van Der Oost and S.W.M. Kengen, 2013. Biohydrogen production by the thermophilic bacterium Caldicellulosiruptor saccharolyticus: Current status and perspectives. Life, J., 3: 52-85.
CrossRef  |  PubMed  |  Direct Link  |  

Calusinska, M., C. Hamilton, P. Monsieurs, G. Mathy and N. Leys et al., 2015. Genome-wide transcriptional analysis suggests hydrogenase and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009. Biotechnol. Biofuels J., 8: 1-27.
CrossRef  |  PubMed  |  Direct Link  |  

Chandrasekhar, K., Y.J. Lee and D.W. Lee, 2015. Biohydrogen production: Strategies to improve process efficiency through microbial routes. Intl. J. Mol. Sci., 16: 8266-8293.
CrossRef  |  PubMed  |  Direct Link  |  

Chen, W.H., S. Sung and S.Y. Chen, 2009. Biological hydrogen production in an anaerobic sequencing batch reactor: PH and cyclic duration effects. Intl. J. Hydrogen Energy, 34: 227-234.
CrossRef  |  Direct Link  |  

Chen, W.Y., J. Seiner, T. Suzuki and M. Lackner, 2012. Handbook of Climate Change Mitigation. Springer, New York, USA., ISBN:9781441979926, Pages: 2130.

Dessi, P., A.M. Lakaniemi and P.N. Lens, 2017. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70°C. Water Res. J., 115: 120-129.
CrossRef  |  PubMed  |  Direct Link  |  

Friedmann, D., C. Mendive and D. Bahnemann, 2010. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. J. Appl. Catal. B. Environ., 99: 398-406.
CrossRef  |  Direct Link  |  

Gadhe, A., S.S. Sonawane and M.N. Varma, 2015. Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Intl. J. Hydrogen Energy, 40: 9942-9951.
CrossRef  |  Direct Link  |  

Garcia, R.E., V.L. Martinez, J.I. Franco and G. Curutchet, 2012. Selection of natural bacterial communities for the biological production of hydrogen. Intl. J. Hydrogen Energy, 37: 10095-10100.
CrossRef  |  Direct Link  |  

Govindammal, M. and R. Parthasarathi, 2013. Production and characterization of bio surfactant using renewable substrates by Pseudomonas fluorescence isolated from mangrove ecosystem. J. Appl. Chem., 2: 55-62.

Hastuti, Z.D., C.Y. Chu, M.A. Rachman, W.W. Purwanto and E.L. Dewi et al., 2016. Effect of concentration on biohydrogen production in a continuous stirred bioreactor using biofilm induced packed-carrier. Intl. J. Hydrogen Energy, 41: 21649-21656.
CrossRef  |  Direct Link  |  

Hawkes, F.R., I. Hussy, G. Kyazze, R. Dinsdale and D.L. Hawkes, 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy, 32: 172-184.
CrossRef  |  

Hernandez-Mendoza, C.E., I. Moreno-Andrade and G. Buitron, 2014. Comparison of hydrogen-producing bacterial communities adapted in continuous and discontinuous reactors. Intl. J. Hydrogen Energy, 39: 14234-14239.
CrossRef  |  Direct Link  |  

Hernandez-Mendoza, C.E., I. Moreno-Andrade and G. Buitron, 2014. Comparison of hydrogen-producing bacterial communities adapted in continuous and discontinuous reactors. Intl. J. Hydrogen Energy, 39: 14234-14239.
CrossRef  |  Direct Link  |  

Jianlong, W. and Y. Yanan, 2016. Biohydrogen Production from Organic Wastes. In: Part of the Green Energy and Technology Book Series, Jianlong, W. and Y. Yanan (Eds.). Springer, Switzerland, Europe, pp: 197-268.

Junior, A.D.N.F., C. Etchebehere and M. Zaiat, 2015. Mesophilic hydrogen production in Acidogenic Packed-Bed Reactors (APBR) using raw sugarcane vinasse as substrate: Influence of support materials. Anaerobe, 34: 94-105.
CrossRef  |  PubMed  |  Direct Link  |  

Kavitha, S., T. Saranya, S. Kaliappan, S.A. Kumar and I.T. Yeom et al., 2015. Accelerating the sludge disintegration potential of a novel bacterial strain Planococcus Jake 01 by CaCl2 induced deflocculation. Bioresour. Technol., 175: 396-405.
CrossRef  |  PubMed  |  Direct Link  |  

Kumar, G., B. Sen, P. Sivagurunathan and C.Y. Lin, 2015. Comparative evaluation of hydrogen fermentation of de-oiled Jatropha waste hydrolyzates. Intl. J. Hydrogen Energy, 40: 10766-10774.
CrossRef  |  Direct Link  |  

Kumar, G., J.H. Park, M.S. Kim, D.H. Kim and S.H. Kim, 2014. Hydrogen fermentation of different galactose-glucose compositions during various Hydraulic Retention Times (HRTs). Intl. J. Hydrogen Energy, 39: 20625-20631.
CrossRef  |  Direct Link  |  

Lee, D.J., K.Y. Show and A. Su, 2011. Dark fermentation on biohydrogen production: Pure culture. Bioresour. Technol., 102: 8393-8402.
CrossRef  |  PubMed  |  Direct Link  |  

Li, D., 2013. TiO2 photo-catalytic degradation of waste activated sludge and potassium hydrogen phthalate in wastewater for enhancing biogas production. Ph.D Thesis, University of Tsukuba, Tsukuba, Japan.

Li, D., Y. Zhao, Q. Wang, Y. Yang and Z. Zhang, 2013. Enhanced biohydrogen production by accelerating the hydrolysis of macromolecular components of waste activated sludge using TiO2 photocatalysis as a pretreatment. Open J. Appl. Sci., 3: 155-162.
CrossRef  |  Direct Link  |  

Ligozzi, M., C. Bernini, M.G. Bonora, M. de Fatima, J. Zuliani and R. Fontana, 2002. Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J. Clin. Microbiol., 40: 1681-1686.
CrossRef  |  Direct Link  |  

Lima, C.S., K.A. Batista, A.G. Rodriguez, J.R. Souza and K.F. Fernandes, 2015. Photodecomposition and color removal of a real sample of textile wastewater using heterogeneous photocatalysis with polypyrrole. Solar Energy, 114: 105-113.
CrossRef  |  Direct Link  |  

Lin, C.Y., C.H. Lay, B. Sen, C.Y. Chu and G. Kumar et al., 2012. Fermentative hydrogen production from wastewaters: A review and prognosis. Intl. J. Hydrogen Energy, 37: 15632-15642.
CrossRef  |  Direct Link  |  

Ljubas, D., 2005. Solar photocatalysis-a possible step in drinking water treatment. J. Energy, 30: 1699-1710.
CrossRef  |  Direct Link  |  

Mohan, S.V., 2010. Waste to Renewable Energy: A Sustainable and Green Approach Towards Production of Biohydrogen by Acidogenic Fermentation. In: Sustainable Biotechnology: Sources of Renewable Energy, Singh, O.V. and S.P. Harvey (Eds.). Springer, Dordrecht, Netherlands, Europe, ISBN:978-90-481-3294-2, pp: 129-164.

Mohan, S.V., V.L. Babu and P.N. Sarma, 2008. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour. Technol., 99: 59-67.
CrossRef  |  

Moreno-Andrade, I., J. Carrillo-Reyes, S.G. Santiago and M.C. Bujanos-Adame, 2015. Biohydrogen from food waste in a discontinuous process: Effect of HRT and microbial community analysis. Intl. J. Hydrogen Energy, 40: 17246-17252.
CrossRef  |  Direct Link  |  

Nakayama, M., T. Nakajima-Kambe, H. Katayama, K. Higuchi and Y. Kawasaki et al., 2008. High catalase production by Rhizobium radiobacter strain 2-1. J. Biosci. Bioeng., 106: 554-558.
CrossRef  |  PubMed  |  Direct Link  |  

Oh, J., I. Hwang and S. Rhee, 2016. Structural insights into an oxalate-producing serine hydrolase with an unusual oxyanion hole and additional lyase activity. J. Biol. Chem., 29: 15185-15195.
CrossRef  |  PubMed  |  Direct Link  |  

Park, J.H., G. Kumar, J.H. Park, H.D. Park and S.H. Kim, 2015. Changes in performance and bacterial communities in response to various process disturbances in a high-rate biohydrogen reactor fed with galactose. Bioresour. Technol., 188: 109-116.
CrossRef  |  PubMed  |  Direct Link  |  

Pilli, S., T.T. More, S. Yan, R.D. Tyagi and R.Y. Surampalli, 2016. Fenton pre-treatment of secondary sludge to enhance anaerobic digestion: Energy balance and greenhouse gas emissions. Chem. Eng. J., 283: 285-292.
CrossRef  |  Direct Link  |  

Poleto, L., P. Souza, F.E. Magrini, L.L. Beal and A.P.R. Torres et al., 2016. Selection and identification of microorganisms present in the treatment of wastewater and activated sludge to produce biohydrogen from glycerol. Intl. J. Hydrogen Energy, 41: 4374-4381.
CrossRef  |  Direct Link  |  

Prema, P. and K.N. Niladevi, 2008. Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J. Microbiol. Biotechnol., 24: 1215-1222.
CrossRef  |  Direct Link  |  

Qian, C.X., L.Y. Chen, R. Hui and X.M. Yuan, 2011. Hydrogen production by mixed culture of several facultative bacteria and anaerobic bacteria. Prog. Nat. Sci. Mater. Intl. J., 21: 506-511.
CrossRef  |  PubMed  |  Direct Link  |  

Rastogi, R.P., Richa, A. Kumar, M.B. Tyagi and R.P. Sinha, 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids, 10.4061/2010/592980

Ren, N., Z. Chen, A. Wang and D. Hu, 2005. Removal of organic pollutants and analysis of MLSS-COD removal relationship at different HRTs in a submerged membrane bioreactor. Intl. Biodeterior. Biodegrad., 55: 279-284.
CrossRef  |  Direct Link  |  

Rossi, D.M., J.B. De-Costa, E.A. De Souza, M.D.C.R. Peralba and D. Samios et al., 2011. Comparison of different pretreatment methods for hydrogen production using environmental microbial consortia on residual glycerol from biodiesel. Intl. J. Hydrogen Energy, 36: 4814-4819.
CrossRef  |  Direct Link  |  

Sharmila, V.G., P. Dhanalakshmi, J.R. Banu, S. Kavitha and M. Gunasekaran, 2017. Effect of deflocculation on photo induced thin layer titanium dioxide disintegration of dairy waste activated sludge for cost and energy efficient methane production. Bioresour. Technol. J., 244: 776-784.
CrossRef  |  PubMed  |  Direct Link  |  

Sharmila, V.G., S. Kavitha, K. Rajashankar, I.T. Yeom and J.R. Banu, 2015. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management. Bioresour. Technol., 197: 64-71.
CrossRef  |  PubMed  |  Direct Link  |  

Skorb, E.V., L.I. Antonouskaya, N.A. Belyasova, D.G. Shchukin and H. Mohwald et al., 2008. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite. Appl. Catal Environ., 84: 94-99.
CrossRef  |  Direct Link  |  

Sui, H., J. Dong, M. Wu, X. Li and R. Zhang et al., 2017. Continuous hydrogen production by dark fermentation in a foam SiC ceramic packed up‐flow anaerobic sludge blanket reactor. Can. J. Chem. Eng., 95: 62-68.
CrossRef  |  Direct Link  |  

Tanisho, S., 2001. A Scheme for Developing the Yield of Hydrogen by Fermentation. In: Biohydrogen II, Miyake J., T. Matsunaga and A.S. Pietro (Eds.). Pergamon Press, Oxford, England, UK., pp: 131-140.

Terrazas-Hoyos, H., E. Portugal-Marin, E. Sanchez-Salinas and M.L. Ortiz-Hernandez, 2014. Evaluation of the potential hydrogen production by diazotrophic Burkholderia species. Intl. J. Hydrogen Energy, 39: 3142-3151.
CrossRef  |  PubMed  |  Direct Link  |  

Yang, S.S., W.Q. Guo, G.L. Cao, H.S. Zheng and N.Q. Ren, 2012. Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour. Technol., 124: 347-354.
CrossRef  |  

Zhang, J., W. Li, J. Lee, K.C. Loh and Y. Dai et al., 2017. Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment. J. Energy, 137: 479-486.
CrossRef  |  Direct Link  |  

Zhang, K., N.Q. Ren and A.J. Wang, 2014. Enhanced biohydrogen production from corn stover hydrolyzate by pretreatment of two typical seed sludges. Intl. J. Hydrogen Energy, 39: 14653-14662.
CrossRef  |  PubMed  |  Direct Link  |  

Design and power by Medwell Web Development Team. © Medwell Publishing 2024 All Rights Reserved